ISEP 2014""""""""""T8

# REAL TIME VEHICLE COUNTRY OF ORIGIN CLASSIFICATION BASED ON COMPUTER VISION

Kristian Kovačić, Edouard Ivanjko
University of Zagreb, Faculty of Transport and Traffic
Sciences, Department of Intelligent Transportation Systems
ZUK Borongaj, Object 71, Borongajska 83A,
HR-10000 Zagreb, Croatia
kkovacic@fpz.hr, edouard.ivanjko@fpz.hr

Sergio Varela
ETSI Telecomunicación, Universidad Politécnica de Madrid
Avenida Complutense nº 30, "Ciudad Universitaria". 28040 –
Madrid, Spain
sd.varela@alumnos.upm.es

#### Abstract

In order to efficiently monitor and control road traffic, relevant traffic parameters values are needed in real time. Traffic parameters include traffic flow speed profile, vehicle type classification, vehicle gap, vehicle length, origindestination matrix, etc. Using these parameters advanced traffic control approaches from the domain of intelligent transportation systems (ITS) can be applied. Additionally, traffic planners can incorporate more accurate traffic forecasts when planning new roads. Also ITS related services can be provided to users, especially precise real time traffic information. Surveillance video cameras combined with advanced computer vision (CV) algorithms are nowadays becoming a tool used more frequently to obtain mentioned traffic parameters. They are used as standalone sensors or in combination with other sensors like radars, inductive loops, etc. In this article architecture of a computer vision based road traffic surveillance system is proposed. Application of such a system for vehicle counting and vehicle country of origin classification using license plate recognition is described. Implemented system is tested using real world road traffic video footage from a Croatian highway near the city of Zagreb. Proposed system quality is analysed using vehicle detection processing time and accuracy.

## Keywords

Road traffic monitoring, Vision sensor, Vehicle detection, License plate recognition,

#### INTRODUCTION

Recent d ecades can be characterized by a significant increase of the number of road vehicles accompanied by a build-up of road infrastructure. Simultaneously various traffic control systems have been developed in order to increase road traffic safety, road capacity and travel comfort. Such control systems need high quality traffic data in real-time, especially control systems from the domain of intelligent transportation systems (ITS).

While analysing traffic on a road traffic network various parameters can be monitored. Such parameters include traffic f low speed profile, distance between vehicles, velocity of vehicles, vehicle classification, etc. They can be measured using various sensors like inductive loops, radars, video sensors, etc. Analysis results can be applied for planning and management of road networks in urban and rural areas including highways.

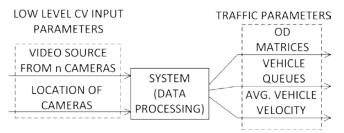
Development o f computing power and cheap video cameras enabled today's traffic safety systems to more and more i nclude ca meras an d co mputer v ision methods. Cameras ar e u sed as p art of road i nfrastructure o r in vehicles. They enable monitoring of traffic in frastructure, detection o f in cident situations, tr acking o f surrounding vehicles, et c. In urban ar eas, computer vision applications can also be u sed i n ar eas of I TS b ased t raffic co ntrol management. Such applications i nelude adaptive traffic light c ontrol, measurement o f q ueue l ength, vehicle classification, etc. [1]. On highways cameras can be used in combination with license plate recognition (LPR) methods for statistical analysis of the vehicle country of origin and generation of origin-destination (OD) matrices. Such analyses ar e useful to i mprove t raffic management and services related to tourism traffic.

In this paper the problem of road traffic analysis using computer v ision i n r eal t ime i s t ackled with t he ai m t o estimate O D matrices o fall arger r oad traffic n etwork. Emphasis is on needed measurements related to a particular road n ode. N eeded measurements i nclude detection of vehicles and extraction of their license plated ata. Whole system is a djusted to work in real time and in out-door conditions. Additionally, appropriate local data base for vehicle data storage is created with possibility to be included as part of all argers ystem with several nodes covered.

This paper is organized as follows. Second section gives a r eview of approaches for r oad t raffic a nalysis. T hird section describes proposed vehicle classification system architecture. Fourth's ection explains the implemented computer vision algorithms for vehicle detection and LPR software development kit (SDK) C ARMEN. Fifth's ection describes speed up of the proposed system. Following sixth section presents obtained results using a real world road traffic video footage. Paper ends with a discussion about open problems and conclusion.

## ROAD TRAFFIC ANALYSIS APPROACHES

When developing systems for road traffic analysis, input and output parameters of the system need to be determined first. System i nputs d escribed f rom low le vel c omputer vision (CV) a spect a nd ou tputs de scribed f rom a spect of traffic s cience ar e p resented i n F ig. 1. Traffic p arameters include v arious s tatistical data s uch as es timated O D



**Figure 1**: Example of input/output parameters of a system for road traffic analysis.

matrices, vehicles q ueues, a verage velocity o f v ehicles, statistics on vehicle registration plates, etc.

All input data in the system need to be received from sensors. Sensors can be divided into in-roadway sensors and over-roadway sensors. In-roadway sensors can be placed in the pa vement or subgrade of the roadway. Sensors of this type can also be taped or a ttached to the surface which represents less aggressive method of installation. Simplest sensors from this group are pneumatic road tube sensor, inductive loop detector, magnetic and piezoelectric sensors. Road tube and piezoelectric sensors are based on measuring mechanical magnitudes which are formed when a vehicle passes over the sensors. They can be used for vehicle counting, determining gaps between vehicles, intersection and sign stop de lays, vehicle's weight and velocity measurement, etc.

### Inductive loops

Inductive loops are based on measuring changes in loop inductances as vehicle p ass ab ove t hem. S ensors ar e installed b elow r oad s urface. T hey ar e more r obust t han previously mentioned r oad t ube an d p iezoelectric s ensors because they are not based on a mechanical interaction with vehicles. P arameters t hat can b e ex tracted from i nductive loops and magnetic sensors are vehicle presence, flow and occupancy. U sing a t wo l oop s peed t rap a dditional parameter such as vehicle velocity can be determined.

In [2], s ystem with multiple i nductive lo ops has been presented. B esides ab ility t o d etect s tandard p arameters extracted b y t his s ensor, p roposed s ystem can al so distinguish b etween b icycle, motorcycle, car, b us, et c. System has been built and tested, however no real counting of traffic entities have been performed.

Approach of using neural network in vehicle detection by inductive loops is proposed in [3]. System with neural network has the ability to perform vehicle detection based on k nowledge a cquired p reviously in a learning stage. In mentioned work, system was trained in the learning stage by 60 [%] of positive samples and 40 [%] of negative samples. Test r esults s how t hat a verage hi t r ate o f s uch s ystem i s about 92.43 [%].

Main disadvantages of all in-roadway sensors including inductive loops are: need for lane to be closed for traffic when installing or maintaining the sensor; cost of installation (additional construction works that need to be performed on the road or lane); difficult maintenance of sensors due to its inaccessibility.

#### Cameras in road traffic surveillance

In systems which use CV for road traffic analysis, most traffic i nformation is extracted from cameras. In this concept, term "camera" usually implies to colour or infrared type of camera, although various other sensors can be used such as LIDARs and radars. These devices return as the output measurement a specific matrix d ata which is interpreted as 2D or 3D image [4].

Radars have the ability to extract position and velocity of a di stant object. B asic w orking pr inciple i s ba sed on emitting a ne lectro-magnetic (EM) b eam (wavelength between 0.1 - 30 [cm]) to the specific object and then receiving reflected beam from it. It is most widely used in aerospace industry. However it has other applications like in automotive industry. Main advantage of radars is that they are not affected by bad weather contrary to LIDARs and video cameras which require good optical visibility [5].

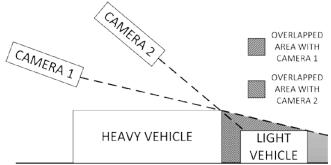
In [6], a system is proposed based on continuous wave (CW) ra dar used for s imultaneous vehicle d etection, velocity measurement a nd v ehicle c lassification. C arrier frequency of EM beam is on the frequency of 24.125 [GHz] and data sampling is performed using a 20 [kHz] sampling rate. V ehicle detection rate is about 95 [%], while a verage accuracy of velocity measurement is 97.1 [%]. A verage accuracy of vehicle classification is 94.8 [%] although it varies for each vehicle type (bike, car, van, bus, etc.).

Video cameras are often used in CV based systems for traffic m onitoring also. S uch s ystems i nclude ve hicle counting, v ehicle c lassification, c omputation of v ehicle velocities and t rajectories, co mputing d istance b etween vehicles, and automatic number plate recognition (ANPR) or sometimes referred as automatic license plate recognition (ALPR) [7].

In [8], system for vehicle classification based on optical camera is p resented. System r ecognizes the vehicle class using its computed 3 D model. O verall system evaluation shows that its precision is 8 7.9 [%] and recall 9 6.1 [%]. Work presented in [9] uses CV system b ased on optical camera to count vehicles.

In s ystems t hat use v ideo cam eras, i mportant features which highly influence final performance of the system are video resolution, location where traffic should be monitored and cameras mounting points.

Modern v ideo ca meras o ften use LAN to b roadcast video s tream (IP c ameras) which o ften ri ses to full HD resolution. M ain p roblem o f us ing s uch hi gh r esolution cameras for traffic analysis is high computational, memory and communication l oad. If v ideo s tream i s en coded with high c ompression r atio, ne twork b andwidth r equirements



**Figure 2:** Comparing overlapped area in the image when different camera locations are used.

will be significantly smaller. However there will be higher requirements for processing unit to de code the video. If compression r atio i s lower (i.e. video in r aw format), processing unit will decode the video more easily but requirements for network bandwidth will be too large for real-time transmission.

Camera m ust be m ounted with such p osition and pointing direction so that vehicles do not overlap each other in the image as shown in Fig. 2. For this reason cameras are usually mounted on a high p lace such as a traffic p ole. It must be ensured that vibrations in the environment (originating from passing vehicles or strong wind) are not carried out to the camera.

System used for traffic monitoring and traffic analysis needs to p erform a variety of tasks such as vehicle detection, ALPR, etc. For vehicle detection ideal location of the camera is high above the road, however this may create problems to ALPR software. ALPR highly depends on the vehicle license p late being visible inthe image in good quality. Because camera is mounted above the road, from its perspective license p late will be distorted and therefore results of ALPR software will be significantly worse than if camera was mounted near the road level. The ideal solution inthis situation is to perform evaluation of camera's locations and select the one that gives best result [10].

# VEHICLE CLASSIFICATION SYSTEM ARCHITECTURE

Proposed v ehicle cl assification s ystem ar chitecture consists of two p arts as shown in Fig. 3. The first p art is implemented in C++ using OpenCV library [11] for road traffic v ideo f ootage p rocessing. I too ntains v ideo processing, i mage en hancements a nd v ehicle d etection techniques which are applied to the road traffic video stream. The task of this part is to detect a possible vehicle, extract it from the video stream as a separate image frame and to transform the separated frame into appropriate form for the second part.

In the second part of the proposed architecture separated video frames are first processed to confirm that detected moving object is a vehicle. If a vehicle is confirmed, the LPR software CARMEN is us ed to obtain a dditional information about the vehicle such as license plate number, pixel coordinates where the license plate was extracted, confidence of extracted license plate number, times tamp

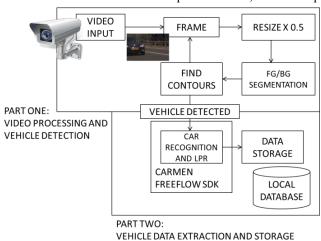


Figure 3: Vehicle detection system architecture.

when and road mark where the vehicle was detected, et c. Obtained i nformation about vehicle is stored in a lo cal database. Proposed local database is configured in a way that it can be used in an augmented road traffic surveillance system where more mutually connected roads are monitored. In such an augmented systeme ach local database conveys datato a central database containing information of a larger monitored road network. In this paper only the system needed to monitor one road segment is described as the first development step for such an augmented system.

# VEHICLE DETECTION AND LICENSE PLATE RECOGNITION

For the purpose of video b ased road traffic flow monitoring various methods can be u sed. A pproach strategies can be based on following methods [12]: active contours; models; features; appearance; stereo-vision.

To determine o ptimal methods, main o bjectives of the application need to be defined. It can be assumed that for determining ve hicle's c ountry of o rigin in r eal-time, in put video f or de veloped c omputer v ision a lgorithm will be obtained f rom a static (non-moving) c amera. Algorithms and methods used in this system will be limited in the scope of this assumption.

First objective of the application is to efficiently detect vehicles in the video. Objects of interest in this application will be only moving vehicles. Second objective of the application is to track vehicles even if they are not moving. Third objective of the application is to recognize vehicle license plate through the LPR software which can be used for further traffic analyses.

#### Vehicle detection

For de tecting v ehicles i n r oad t raffic v ideos, methods like foreground/background (Fg/Bg) i mage segmentation and optical f low can be u sed. W ith the Fg/Bg image segmentation method, moving o bjects ar e s eparated from static part of an image. This is based on comparing current image with the image that contains only background objects (non-moving objects) as shown in Fig. 4. If images are in grey scale, only pixel intensity will be compared. In images where 3 ch annels are u sed f or colour (RGB), a ll th ree channel values will be compared. If differences between pixel values exist, they are filtered with specific threshold. If a fter threshold difference still exists on certain pixel, it will be c lassified a s foreground pi xel or ot herwise background pixel. Drawback of this method is that object will not be detected if it stops for a certain amount of time. OpenCV framework contains large collection of classes and functions which are used in computer vision applications. In OpenCV framework, class BackgroundSubtractor is used to perform Fg/Bg image segmentation based on the algorithm described in [13].

System d escribed i n [14] us es Fg/Bg i mage segmentation method. I t performs computation o f O D matrix a t r oad in tersection. After r eading a n i mage from video stream, system performs image pre-processing using Gaussian b lur filter. S econd s tep is to update b ackground model using Fg/Bg i mage s egmentation m ethod. In the

image with foreground objects, method for morphological opening is performed which consists of dilation and erosion filters. Last s tep of the system is to detect vehicles, link them to appropriate nodes and create the OD matrix. This is achieved using markers and object tracking. After computation of OD matrix is complete, systems will contain numbers of incoming and outgoing vehicles on the specific intersection entrance or exit.

Regardless of object tracking, after cer tain o bject has been detected, its i mage co ordinates can be computed. If coordinates of the object are followed through certain time, object trajectory can be derived. In [12], a Kalman filter is used to construct linear motion model. Position of the object in the next frame is estimated using the Kalman filter. Further processing consists of counting the number of vehicles passed through a certain surveillance region. This can be a chieved by monitoring vehicles passing through specific point in an image or by tracking whole trajectories of vehicles in the image. Trajectory tracking starts when a vehicle enters the surveillance area and ends when it leaves the surveillance area.

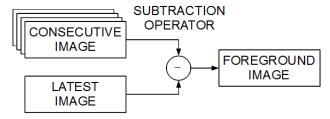
Proposed a pplications i n t his pa per pe rform obj ect detection ba sed on F g/Bg i mage s egmentation a nd LPR CARMEN Freeflow s oftware. F irst v ersion of de veloped application us es f unctions a nd c lasses for F g/Bg i mage segmentation from OpenCV framework. Second version of application a lso pe rforms Fg/Bg i mage s egmentation for vehicle detection where a lgorithms are executed mostly on GPU u sing Di rectX 3 D framework. F g/Bg i mage segmentation method used in second application is based on the already described concept presented in Fig. 4.

#### License plate recognition

When a vehicle p assing through a monitored r oad network node is caught in an image obtained from camera, extraction of its license plate number can be valuable to the system for traffic a nalyses. After p arsing the license p late number, monitoring application can determine from which country the vehicle comes from. With this data it is a lso possible to make statistics which show origin countries that are most frequent on the monitored road segment.

LPR a lgorithms can have d ifficulties when extracting license plate data caused by variability in license plate and environmental properties such as:

- Location of license plate in the image;
- Quantity (one or more license plates in the same image);
- Size (if camera pan-tilt-zoom function is enabled this parameter will be variable in large scale);
- Colour of license plate;
- Font for d ifferent la nguages a nd nations ( i.e. European countries, Asian countries);



**Figure 5:** Basic concept of Fg/Bg image segmentation.



**Figure 4:** Basic work f low chart d iagram o f g eneral LPR algorithms [15].

- Custom license plate (non-regular format defined by owner);
- Occlusion ( caused by e nvironment dense tr affic with overlapping vehicles, snow, dirt, rain, fog);
- Inclination (caused by camera perspective);
- Environment ill umination problems (especially during night);
- Background noises (other textures on vehicles or in the road environment which L PR a lgorithm can misinterpret as a license plate).

Basic work flow of LPR algorithms can be described by four stages as shown in Fig. 5. In the first stage, part of an image with the whole vehicle is located. After vehicle position in the image is known, second stage begins with locating the license plate on a region of the image with the vehicle. Third stage consists of segmenting only license plate numbers, filtering out other image features. Last stage finally performs optical character recognition (OCR) and extracts license plate data [15].

Developed ap plication described in [16] p erforms last stage of L PR t hat is b ased on ar tificial neural networks. Application can process single character with resolution 34×22, where execution time on PC Dual Core 2.4 [GHz] is 8.4 [ms], while on embedded FPGA platform is 0.7 [ms] as shown i n T ab. 1. I n [ 17], L PR method robu st t o environmental weather c onditions is p resented. F or computing license plate location on the vehicle, i mage is first c onverted t o grey c hannel. After c onversion, e dge detection is performed followed by image morphology and other filters. After license plate is localized, characters are segmented an d f inally OCR i s p erformed. Met hod was tested on 3 92 i mages where character r ecognition r ate i s 95.6 [%] and average execution time is 500 [ms]. In scope of c urrent work, CARMEN Freeflow's oftware was also tested f or p erformance co mparison. F rom t est r esults

| OCR<br>technique           | Character recognition rate [%] | Platform         | Execution time [ms] |
|----------------------------|--------------------------------|------------------|---------------------|
| System on FPGA             | 97.3                           | Vertex-4<br>FPGA | 0.7                 |
| System on PC               | 97.3                           | PC<br>2.4 GHz    | 8.4                 |
| SVM                        | 97.03                          | PC<br>1.8 GHz    | 18                  |
| Self-<br>organising<br>map | 90.93                          | Virtex-4<br>FPGA | not<br>available    |
| SVM                        | 94                             | DSP<br>C6416     | 2.88                |
| CARMEN                     | not<br>available               | PC<br>2.4 GHz    | 15                  |

**Table 1**: P erformance comparison o f single c haracter

performing LPR with CARMEN Freeflow software requires approximately 290 [ms] with an image of 690 × 440 resolution, where O CR p er single c haracter in r esolution 34×22 is 15 [ms] as shown in Tab. 1. This represents to 0 long execution time for real-time processing and therefore different approach needs to be considered.

#### Implemented approaches

Developed ap plications in this paper use two different approaches for vehicle detection. Both applications have the goal to o btain road traffic p arameters of a road segment using a surveillance video stream as input. First approach is to use OpenCV framework for Fg/Bg i mage segmentation and L PR a lgorithms defined in CARMEN Freeflow framework. In the first approach vehicles in an image are first detected and localized by Fg/Bg image segmentation method and contour extraction. After vehicles are localized their license plates are read by CARMEN Freeflow ANPR software. Image region that contains vehicle is sent to the mentioned software after which it can extract information such as license plate number, confidence of LPR, country of origin related to recognized license plate, etc.

Second approach presented in this paper consists of optimized speed-up methods for image processing. Methods are developed to execute mainly on GPU architecture. Using this technique execution time is significantly decreased and real-time execution has been made possible. Application first performs Fg/Bg image segmentation using GPU. After vehicles have been extracted in an image they are represented in binary format. As such data is insufficient for vehicle detection, they are further translated into clusters where each cluster represents moving vehicle. From this data further parameters can be extracted such as vehicle velocity, distance between vehicles, etc.

#### VEHICLE DETECTION SPEED UP

As mentioned, f irst ve rsion o f the i mplemented algorithm for v ehicle d etection h as s hown t o b e efficient from accu racy as pect. Further d evelopment co nsists o f optimizing it for f aster e xecution and i ncreasing i ts accuracy. This i s t rying t o b e a chieved u sing second approach. Speed u p o ptimization can be performed using two basic strategies: the use of modern system architecture features such as multi-threading (MT) and Streaming SIMD Extension (SSE) s upport o n C PU i ncluding parallel processing on GPU, and simplification of all mathematical operations which a lso i ncludes t rade-off b etween r esults precision and ex ecution t ime. B asic work f low o f application which uses MT, SSE and GPU support is shown in Fig. 6. Main guidelines for proposed execution speed up development are following:

- Algorithms that process large amount of data (image matrices) should be performed on GPU if possible;
- If s mall a mount of da ta needs to be processed, it should be preferred to perform it on CPU with SSE support where possible;
- If the algorithm cannot be executed on GPU because of its complex design and it requires a large amount of p rocessing r esources, i t can b e e xecuted o n

multiple threads in parallel which can significantly improve its execution time.

Algorithms that process every pixel in the image can be time c onsuming for CPU e ven with us e of S SE s upport. Modern G PU ar chitecture co nsists o f many stream processors t hat can p rocess d ata i n p arallel ex ecution (SIMD i nstructions). T his represents main re ason for considering use of GPU in further development of proposed application regarding real-time properties.

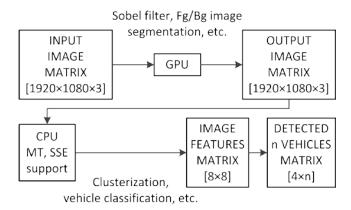
#### EXPERIMENTAL RESULTS

The ex perimental t ests were carried out with two real world outdoor traffic videos. First video is a traffic node corresponding t ot he entrance of the parking lot of the Faculty of Transport and Traffic Sciences with a low traffic flow. Second video corresponds to a highway entrance of the city of Zagreb, Croatia. This highway traffic video contains a denser and more variable traffic flow compared to the first video.

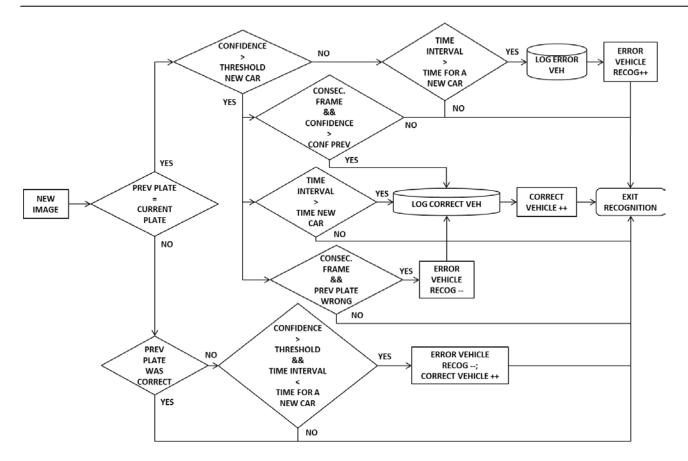
#### Developed application

The application was developed in different stages. In the first v ersion of the pr ogram, the a rea where the moving object is detected is extracted from the image and processed with CARMEN LPRs oftware using the implemented method Recognize. This process is repeated every five frames to ensure needed vehicle detection accuracy. Using the CARMEN software, a vehicle is detected by its license plate number and stored in the local database. To store a license plate the confidence provided by CARMEN software must be higher than the chosen threshold. Value of 50 [%] is used and is derived from experiments made. CARMEN software also provides license plate country of origin recognition, coordinates where the license plate is placed, etc. To test this development stage simpler first video was used.

In the second development stage the aim was to improve the performance in a real world scenario like described with the s econd road t raffic video. C ompromise b etween r eal time processing and accuracy had to be kept. To accomplish this goal, license plate number registration and aspects like environmental e ffects ( sun shines, shadows, r ain, e tc.) o r



**Figure 6:** Proposed work f low u sing m odern s ystem architecture features.



**Figure 7:** Work flow diagram for license plate registration.

moving o bjects ex traction were s tudied from t he s econd available highway traffic video footage.

The cases where l icense plate r egistration canbe improved are: (i) registration of two different license plates in a s mall time interval; (ii) registration of a license plate when CARMEN software confidence is too small; and (iii) differentiate t wo d ifferent license plates in a s hort t ime interval due to real highway traffic speed.

From these cases the algorithm was improved to register one license plate per vehicle and correct wrong license plate recognized according to CARMEN s oftware confidence. The confidence was reduced to forty percent due to high speed and environmental conditions. Time threshold of proximity between t wo different vehicles is set to one second and automatically adjusted during the execution of the program. The final algorithm is shown in the work flow diagram in Fig. 7.

To mitigate the environmental effects that can influence in the license plate recognition, sharpener filter was used. Sharpener filter amplifies pixels with high frequency (pixels that have large differences in intensity compared to other near pixels). This filter was first applied on i mages extracted from the original video to evaluate whether performance improvements can be made in the algorithm.

Speed u p using extraction of a f ixed i mage ar ea i s proposed as p art of the module for de tection of moving objects. From the second video footage, the coordinates of the detected moving objects bounding boxes were collected. Average values of these coordinates were calculated and set in the program to extract a fix image cut. In Fig. 8 points given by the contour method are marked in red, blue, black and g reen. They d enote the extracted image area sent to LPR. Yellow points represent the a verage of these points.

Finally cyan points represent the adjusted points used in the implementation.

#### Experimental setup description

The first v ideo w as u sed to get f amiliar w ith the software CARMEN, s et the basis of the b ehaviour of the program, so it c an be tested in a controlled environment. Second v ideo is us ed to improve the performance of the program with a real world example of highway traffic.

The first version of the program implemented was tested with the first video footage. The video frames are analysed with contour method from OpenCV library [11] to filter the moving objects with a range of areas. The second version of the developed program was tested using the second video



**Figure 8:** Point scatter where images are extracted for LPR.

| Sharpen filte                     | Yes            | No      |         |
|-----------------------------------|----------------|---------|---------|
| Resolution                        |                | 320x180 | 320x180 |
| Contours recognition              | Avg. time [ms] | 1       | 1       |
| Moving object detection           | Avg. time [ms] | 18      | 16      |
| Recognize method                  | Max time [ms]  | 282     | 300     |
|                                   | Min time [ms]  | 16      | 12      |
| Vehicle detection and recognition | Avg. time [ms] | 25      | 23      |

**Table 2:** Execution time analysis.

footage. The goal of the testing is to get execution time results and vehicle data collection accuracy.

## Execution time and accuracy analysis

First an alysis was performed to compare the execution time with an image extracted from contours method and the fixed image cut. The analysis proves that a fixed area keeps the accuracy and reduces the algorithm execution time for about 46 [%]. A fixed area does not need to calculate coordinates, and the area covered allows accurate license plate recognition.

Second an alysis was p erformed t o co mpare t he execution time with sharpen filter and without it. Table 2 shows that execution time in average increases with filter performance and Tab. 3 shows accuracy about recognized license p lates. The total number of counted vehicles increases when filters are implemented in the algorithm. On the other hand, the number of incorrectly registered vehicles is higher than the analysis done without filters.

The number vehicles that can be registered in the video footage ar e 5 29. The developed a pplication recognizes vehicles that do n ot c orrespond t o t he l ane t hat i s b eing analysed. With these results, a fix image cut without filter performance t o car ry o ut t he l icense p late r ecognition i s chosen as configuration to be implemented.

#### Vehicle country of origin distribution

Table 4 contains p art o f extracted numbers which represents vehicles/country found in the video analysed. Based on the video footage, traffic flow is estimated to be 1088 [vehicles/hour].

In the second video footage vehicles from 18 different countries were registered. From the total number of detected vehicles, the application was not able to recognize the origin country of only 8 vehicles. Germany is the country with the most r ecognized v ehicles. B osnia an d H erzegovina,

| Sharpen filter used         | Yes   | No    |
|-----------------------------|-------|-------|
| Total time evaluated [s]    | 1760  | 1760  |
| Total vehicle count         | 534   | 532   |
| Correct vehicles registered | 507   | 515   |
| Wrong vehicles registered   | 27    | 17    |
| Corrected vehicles          | 94    | 80    |
| Mean Confidence [%]         | 70.96 | 74.76 |

Table 3: Vehicle count statistics results.

| Country of origin | Number of vehicles registered | Percentage [%] |
|-------------------|-------------------------------|----------------|
| Austria           | 83                            | 15.6           |
| Croatia           | 47                            | 8.8            |
| Czech Republic    | 72                            | 13.5           |
| Germany           | 166                           | 31.2           |
| Poland            | 88                            | 16.5           |
| Slovenia          | 17                            | 3.2            |
| Others            | 51                            | 9.7            |
| Unknown           | 8                             | 1.5            |
| Total Vehicles    | 532                           | 100            |

**Table 4:** Vehicle country of origin data obtained from the road traffic video footage analysis.

Bulgaria, Lithuania and Netherlands were the countries with the least recognized cars. We can conclude that this is an important node of the C roatian traffic network for the tourists, due to the variety of countries recognized and the traffic flow

#### CONCLUSIONS AND FUTURE WORK

In this paper a computer vision based framework for road v ehicle c ountry of or igin c lassification is proposed. Used approaches are simple to implement and have real time c apabilities. The de velopment ph ase pr oduced t wo applications. First a pplication de pends on O penCV a nd CARMEN Freeflow f rameworks w here all f unctions f or image processing are called from mentioned frameworks in order t o d etect r oad v ehicles. Although a ccuracy r esults were sufficient, further optimization had to be considered because real time execution was not guaranteed. Most of the applied algorithms are fast enough to be run in real time. However applied LPR method created problems in this matter. F urther development made it possible t o significantly improve execution times. Performance improvement was gained in road v ehicle extraction and detection a lgorithm that us es a fixed i mage s ize, a nd i n executing part of the algorithms on GPU instead on CPU. Based o n i mage p rocessing an d CARMEN's oftware performance, the algorithm was optimized for road nodes characteristic for highway traffic.

First results show that proposed system can collect road vehicle data accurately enough for one road network node. Collected data can be used for detailed road traffic analysis. Country of origin distribution was used as test case. Further development of the proposed system will tackle monitoring and v ehicle t racking o f a l arger r oad t raffic n etwork t o enable estimation of OD matrices, measurement of vehicle mean speed and estimation of traffic flow.

# **ACKNOWLEDGMENTS**

Authors wish to t hank p rof. H rvoje G old and N ikola Bakarić for their valuable c omments d uring writing t his paper. This r esearch h as been p artially s upported b y University of Zagreb g rant 2013 -ZUID-21,5.4.1.2, the E U COST action TU1102 and by the European Union from the European R egional D evelopment F und b y t he pr oject

IPA2007/HR/16IPO/001-040514 "VISTA - Computer Vision Innovations for Safe Traffic".

#### REFERENCES

- Manstetten, D., M aichle, J., Determination of T raffic Characteristics Using Fuzzy Logic, P roc. V ehicle Navigation and Information Systems Conf, Oct, 1996, vol. 7, pp. 43-53.
- 2. Ali, S.S.M.; G eorge, B.; V anajakshi, L., A s imple multiple loop sensor configuration for vehicle detection in a n undisciplined tr affic, Proc. S ensing T echnology Conf, Nov./Dec. 2011, pp. 644-649.
- 3. Oliveira, H.A.; Barbosa, F.R.; Almeida, O.M.; Braga, A. P S, A Vehicle Classification Based on Inductive Loop Detectors U sing Artificial Neural N etworks, P roc. Industry Applications Conf, Nov. 2010, pp. 1-6.
- 4. Tewolde, G.S., Sensor and N etwork T echnology for Intelligent Transportation Systems, Proceedings of Electro/Information T echnology Conference, M ay. 2012, pp. 1-7.
- 5. Tribe, R., Automotive applications of microwave radar, IEE Colloquium on Consumer A pplications of Radar and Sonar, May. 1993, pp. 1-5.
- Fang, J., Meng, H., Zhang, H., Wang, X., A Low-cost Vehicle D etection and C lassification System B ased on Unmodulated C ontinuous-wave R adar, P roceedings of Intelligent Transportation Systems Conf, Sept. 2007, pp. 715-720.
- 7. Buch, N., Velastin, S.A., Orwell, J., A Review of Computer Vision Techniques for the Analysis of Urban Traffic, IEEE Transactions ITS, vol. 12, no. 3, Sept. 2011, pp. 920-939.
- 8. Buch, N., Orwell, J., Velastin, S.A., Detection and Classification of V ehicles f or U rban Traffic S cenes, Proc. Visual Information Engineering Conf, Aug. 2008, pp. 182-187.
- 9. Soh, J., Chun, B. T., Wang, M., Analysis of road image sequences for vehicle counting, Proc. Systems, Man and Cybernetics Conf, vol. 1, Oct, 1995, pp. 679-683.
- Bodor, R., S chrater, P., P apanikolopoulos, N., Multicamera positioning to optimize task observability, Proc. Advanced V ideo and S ignal Based S urveillance C onf, Sept, 2005, pp. 552-557.
- 11. Bradski, G., The OpenCV library, Dr. Dobb's Journal of Software Tools (2000), vol. 25, no 11, pp. 122-125.
- 12. Bai, L., To mpkinson, W., Wang, Y., Computer vision techniques for traffic flow computation, Pattern Analysis and Applications (2004), vol. 7, no 4, pp. 365-372.
- 13. P. KaewTraKulPong and R. Bowden, An Improved Adaptive B ackground M ixture Mo del f or R eal-time Tracking with S hadow D etection, Proc. 2nd European Workshop o n A dvanced V ideo B ased S urveillance Systems, AVBS01, 2001.
- 14. Šegvić, S., et al., Estimating O D matrices a t intersections i n a irborne v ideo a p ilot s tudy, P roc. MIPRO Conf, 2012, pp. 977-982.
- 15. Shan D u, I brahim, M ., S hehata, M., B adawy, W ., Automatic License Plate Recognition (ALPR): A Stateof-the-Art R eview, Circuits a nd S ystems for V ideo

- Technology Trans., Feb, 2013, vol. 23, no. 2, pp. 311-325.
- 16. Zhai, X., B ensaali, F., S otudeh, R., Real-time o ptical character recognition on field programmable gate array for automatic number plate recognition system, Circuits, Devices Systems, IET Trans., Nov, 2013, vol. 7, no. 6, pp. 337-344.
- 17. Zhao, J., et. al., Research and implementation of license plate recognition\_technology, Proc Control and Decision Conf, May, 2012, pp. 3768-3773.

#### **BIOGRAPHIE**

Kristian Kovačić was bor n on 16th J anuary 1986 i n Zagreb, Croatia. He received his bachelor and master degree at the Faculty of Transport and Traffic Sciences University of Z agreb. D uring h is ed ucation h e s howed p articular interest in programming, image processing and 3D graphics applications. Currently he is employed at the Faculty of Transport and Traffic Sciences as a research engineer on the project V ISTA. H is interests are related to application of computer vision in transport and traffic sciences, particularly vehicle detection and tracking, vehicle origin-destination matrix estimation using license plate recognition and measurement of traffic parameters.

**Edouard Ivanjko** received his B.Sc. degree in 2001 and his P h.D. degree in 2009 at the Faculty of E lectrical Engineering and C omputing, U niversity of Zagreb. Currently he is an Assistant Professor at the Department of Intelligent T ransportation S ystems, F aculty of T ransport and T raffic Science, U niversity of Zagreb. H is research interests are image processing and analysis with application for traffic monitoring and control, estimation and prediction of traffic parameters, autonomic road t ransport s upport systems, ITS and intelligent traffic control. He published 29 scientific p apers in international j ournals and conferences, and one book chapter.

Sergio Varela is currently working on his master thesis at N XPS emiconductors, E indhoven, e xpected t o be finished by M ay 2014. Doing a double degree, part of T.I.M.E n etwork, M.Sc. in Telecommunications at ETSI Telecomunicación, Technical University of Madrid and MSc in Electrical Engineering at Lund Tekniska Högskola. His s pecialization is design of processors and digital systems, but a lso knowledge in other fields such a scommunications basis and telematics. He has done two internships thanks to the IAESTE association, one of them at the Faculty of Transport and Traffic Science, University of Zagreb.