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Abstract

Today’s road traffic control problems include solving a traffic situation with many
congestions, increased traffic demand in peak hours, need for high mobility and fast
response in case of an incident. Video sensor or camera combined with state of the art
image processing algorithm is more and more becoming the approach to road traffic
monitor. Advantage of obtained traffic video footage is that many high level traffic
information can be extracted. High level traffic information includes incident detection,
vehicle classification, origin-destination matrix estimation, etc. This reports deals with
the possibility to track vehicles in a traffic network using license plate recognition. The
final results include developed image processing system, vehicle detection and license
plate recognition to create an application that fulfills all mentioned requirements.

Extraction of traffic data using computer vision technology is nowadays related to
creation of traffic statistics and to improvement of the traffic conditions for drivers.
The first development direction has been carried out on two different videos and the
data extracted were used to compile traffic statistics on a real world traffic highway and
establish the principles of the automatic highway network origin destination estimation
that will be developed in the future.

This reports includes presentation of experimental results obtained from real world
highway traffic video footage and conclude with a summary of the tasks done and
future work proposals.
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1 Introduction

This report is written in the scope of the first authors IAESTE internship at the De-
partment of Intelligent Transportation Systems of the Faculty of Traffic and Transport
Sciences University of Zagreb and its volunteer work on the project Computer Vision
Innovations for Safe Traffic (VISTA). Project VISTA has been carried out since March
2013 with a planned duration of 24 months. It aims to improve traffic surround view
parking assistance, automatic headlight detection, traffic sign detection and recogni-
tion, among others with computer technology.

Project participants are the Faculty of Electrical Engineering and Computing (UNI-
ZG-FER) as leading institution and Faculty of Transport and Traffic Sciences (UNIZG-
FTTS) as partner institution, both from University in Zagreb.

Most of the research and development work described in this report has been car-
ried out during the internship of the first author of this technical report. Internship
was sponsored from the student organization IAESTE and from UNIZG-FTTS. Work
equipment was provided from the Department of Intelligent Transportation Systems
from UNIZG-FTTS.

The area of research which is investigated is origin-destination (OD) matrix estima-
tion of traffic flow in a highway traffic network, vehicle detection in a highway traffic
video footage, license plate recognition and database for manipulation of extracted
vehicle data. In order to make the described research, Microsoft Visual Studio 2012
(programming of the needed application in C++), openCV library for image processing
and CARMEN® ANPR Engine for plate recognition will be used.

Aim of this research and development is to advance in the project VISTA, investi-
gate procedures of optimal moving vehicle recognition, test accuracy of CARMEN®
ANPR Engine in plate recognition process, analyze execution time and finally evaluate
implemented application using a real world road traffic video example.

This report is organized as follows. Section 2 describes the problem that has to
be solved, and following section 3 describes state of the art approaches used for OD
matrix estimation. Section 4 describes applied approach for vehicle detection from road
traffic video footage. Section 5 describes the architecture of the developed application.
Section 6 shows the obtained experimental results of several test videos and finally
section 7 ends this report with conclusion and future work proposals.



2 Problem description

For an effective traffic situation monitoring, first step is to get traffic network a few
basic parameters that are needed: (i) distance between vehicles; (ii) length of vehi-
cles; (iii) velocity of vehicles; and (iv) vehicle trajectories. These parameters need to
be measured and calculated with great accuracy in order to get useful statistical data.
From this basic parameters, more complex parameters like traffic flow, traffic structure
regarding vehicle types and road link load can be obtained. In order to estimate this
data the developed system needs to use computed features like average speed of each
vehicle that has been detected in its travel through the traffic network. Nodes of the
monitored traffic where a vehicle has been detected need to be logged. In this case
nodes denotes points in the road network where the traffic is being monitored using
a video camera. Mostly such points are entry or exit points of a highway network,
crossroads or toll plazas.
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Figure 1: Basic parameters used for traffic monitoring

In Fig. 1, monitored basic parameters, vehicle lenght and distance between vehicles
are given. Parameter [; presents vehicle length in [m] and d; presents distance between
vehicles in [m]. These parameters can be measured with image processing techniques.
To calculate dynamic parameters such as the average velocity of vehicles, additional
parameter - time needs to be known. In Eq. 1, n is the total number of monitored
vehicles and ¢; represents a time interval in which vehicle travels distance s;.
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Table 1: OD matrix
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Figure 2: Nodes and connection between nodes

Further processing consists of computing an OD matrix. In this matrix, rows
presents input node and matrix column exit node of the monitored highway network.
Each cell in the OD matrix represents link between two nodes, where corresponding
cell value is the number of vehicles traveled over this link. Nodes are specified by rows
and columns. In Fig. 2, traffic network with four nodes is used as an example with the
associated OD matrix in Table 1. It has to be noticed that in this case every node is
simultaneously an input and an exit node. From this reason the OD matrix given in
Table 1. is not symmetrical. Total number of vehicles crossed from or to a node is cal-
culated with summarizing values in the specific row or column. Mentioned parameters
represent good foundation for calculation of further statistical information.



3 State of the art approaches

Computer vision gives many approaches in solving of the above mentioned problems.
Modern computer’s architecture allows fast computation using multi-core CPUs or fast
parallel graphical processing units (GPUs). Main classification between today’s algo-
rithms used in computer vision can be made based on the platform that they are made
for. For image processing, algorithms are executed in most cases on the GPU, as GPU
is considered to have a good architecture for sequential processing large amounts of
data. In cases where image processing algorithms consists of many branching mech-
anisms, CPU architecture should be considered for executing algorithms rather then
GPU architecture. GPU architecture gives much lower performance when it is execut-
ing an algorithm with many branching mechanisms.

On aspect of traffic network monitoring, one of the main processes in computer
vision software is object detection and recognition. It can be done by various methods
such as foreground/background (FG/BG) image segmentation, edge detection, high
level object recognition, etc. Using these methods, more complex parameters can be
computed. Extraction of different information from an image (average velocity of a
vehicle, distance between vehicles, etc.) can be achieved with algorithms that process
and “understand” vehicle physics model.

In Fig. 3, basic principle of FG/BG image segmentation is shown. It is based on
separating a foreground image (moving objects) from a background image (static ob-
jects). Background image is created by combining a collection of consecutive images.
After the background image is created, foreground image is calculated by subtract-
ing the latest image from a collection of previously images stored and the background

image [1].
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Figure 3: Work principle of an FG/BG image segmentation method.

Unlike FG/BG image segmentation, edge detection methods are based on process-
ing a single image. From an image, edges are extracted based on an algorithm that
compares differences in pixel features. Segment of the image where a difference in
pixel features is high can be defined as edge of an object [2]. Object recognition meth-
ods are useful in cases where a specific object needs to be recognized and separated
from other objects (e.g. to separate a specific vehicle type) [3].



4 Vehicle detection

First requirement to detect a vehicle from an image is to separate the vehicle from the
rest of the image. After the vehicle is separated, it is possible to extract its additional
high level parameters such as position and velocity. In the field of computer vision
there are a few basic principles on which algorithms for object detection are based:

1. Separation of dynamic (foreground objects - vehicles and pedestrians) and static
(background) segment of an image [1];

2. Calculating optical flow of a specific segments of an image (detection of moving
objects) [4];

3. Object detection with algorithms based on Hough method [5];

4. Detection of a vehicle based on algorithms that use modified Haar methods.

From mentioned methods, first and second require to perform calculations on a
multiple consecutive images simultaneously. Contrary to this, third and fourth need to
perform calculations only on one image. In scope of this work the first method is used
i.e. foreground/background image segmentation method.

After foreground/background segmentation is performed, contours on foreground
image with moving objects have to be found. Area of contours for each object is cal-
culated. If area is larger than specific threshold value, then it is considered that moving
object is a vehicle and further processing is done to extract additional information such
as the license plate registration number.



S Application architecture

The application architecture of the developed application consist of two parts. First
the image processing part that is executed in each single node. Figure 4 shows the
structure of the image processing performed in order to detect a vehicle and extract
its license plate data. The video input is first resized to a smaller size to speed up
further processing since HD video footage with corresponding high resolution images
are used. Next step is background/foreground segmentation to ensure that the system
is able to identify the contours.

Then from all the contours that have been identified, the ones that fit between a
minimum and maximum area boundaries are sent to license plate recognition. The
developed Recognize() method uses CARMEN® SDK to extract vehicle data (license
plate number, confidence, license plate coordinates, country and time stamp) and finally
store the data in the node database.
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Figure 4: Application architecture

Second part consist of a database which structure depends on the monitored high-
way traffic network architecture. The vehicle data extracted is stored in a local database
that is been setup for each node. In parallel, data related to vehicle plate number, node
id and time stamp when the vehicle was registered, is stored in a central database that
is been setup for shown in Fig. 5. Regarding the node ID the system can differentiate
between input and exit nodes in the the highway traffic network.
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Figure 5: Highway network structure seen from database point of view
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6 Experimental results

For the experimental test, two different real world highway traffic videos are used.
First video is a traffic node with low traffic flow, used to make a first estimation of how
the program should work in a controlled environment. Second video is a node with
high and variable traffic flow. With the first estimation set, the second video is used to
increase the accuracy in detection and recognition using a real world example highway
traffic video footage.

6.1 Highway network

As mentioned above the purpose of a video analysis is to monitor a highway traffic net-
work and to record incoming cars information in the input nodes and outcoming cars
information in the output nodes. This car information (plate, country, node, incom-
ing/outcoming time) will be stored in local databases in each node to have redundant
information in case to need verification, simultaneously this information will be stored
in a central database where a register of the car will be created with plate information,
input node, incoming time, output node, outcoming time. This information is neces-
sary to set the coefficients of the highway network matrix. The network will be taken
as a black box as shown in Fig. 6.

Figure 6: Traffic network with input and exit nodes

First Matlab simulation to test the OD matrix estimation was carried out with 512
car registration plates, four inputs and four output traffic nodes has been made. Discrete
incoming times and a random lapse was added to each incoming time as outcoming
time and the OD resulting matrix is shown in the Eq. 2, the database is shown in
Table 2 and each node plate record is shown in input record in Table 3 and output
record in Table 4.
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Table 2: Example of vehicle registration plate data in central database.

Plate No Tin T out Node in | Node out
’OSDA373’ 17| ’1.7598’ 3’ 4
’ABGMRY9%4’ | 1’ | ’1.2909° 2’ 1

4P75013° 1| 12774 4 ’3’

*1P57957 17| ’1.0061° 1’ 0’
"DEGF1208" | 2’ | ’2.2425° 1’ 4
"CAO012BF’ 27 | ’2.9367 2’ 3’
"DW7487X’ 27| ’2.8602’ 4 1

Table 3: License plates recorded in each input node

InNode 1 InNode 2 InNode 3 InNode 4
*1P57957 >’ABGMR94’ *OSDA373’ 4P75013°
"DEGF1208’ "CAO012BF’ *KTKR49’ "DW7487X°
2E77135° "MMES222’ "MILMA23’ "BILP272’

"ERE2’ "W85156U° "LAUAF22’ | ’EL544CN’
’CB3000T” ’0O189TO190° "CE472710 "MJA6034°

6.2 Video footage processing

In the first version of the program contours method has been used to select an area of
the whole image and forward it to the plate recognition part, to not process all of the
possible contours in the image and the detected object must have a minimum area. Then
only a smaller part of the whole image is processed in the Recognize method, which
shows the car plate once this is recognized using the CARMEN® software. After this
step also several other features of the car plate as ID, country, confidence, coordinates
of recognition, etc. are available. Once the plate is recognized, every five frames the
video is evaluated to check the car plate again.

With this base, the aim was to improve the code and keep the compromise between
processing speed and accuracy, keeping in mind that the application will run in real
time. The starting point was to identify the plate one time and make sure that the
plate recognized is correct and matches with the image. To solve these problems in

Table 4: License plates recorded in each output node

OutNode 1 OutNode 2 OutNode 3 OutNode 4
’ABGMRY94’ | ’1P57957 ’4P75013° ’OSDA373’
'DW7487X’ "KTKR49’ ’CAO012BF’ | ' DEGF1208’

"BILP272’ 2E77135° | "MMES222’ | "MILMA23’

’EL544CN’ | "LAUAF22’ | "W85156U° ’ERE2’
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a first approximation, the plates between two different frames are compared, if there
is difference a new car is registered, with the order of entrance, time stamp, plate and
country. For the second part CARMEN® software feature confidence is used. It gives
an extracted license plate accuracy value in a range between 0-100 denoting how much
the program is sure that the plate is correct. Taking advantage of this feature a trigger
of 40[%)] was set as threshold to accept a plate as a correct. Lower confidence values
denote an error in the LPR process. For further analysis the confidence value is also
registered with car data.

The first approximation explained above worked in the first video example with low
traffic flow. In the second example with variable traffic flow, this methodology was not
efficient. Due to real world aspects like speed, environmental effect, special cases as
car proximity, etc. that intervene in the plate detection and recognition. These aspects
have to be taken into account for the program improvement.

To reduce the recognition error due to the speed and car proximity used algorithm
has been optimized with the most probable cases obtained during a video analysis.
The resulting cases are, two different car plates in two consecutive frames (either cor-
rect/correct, error/correct, correct/error) or an error found according to CARMEN®
confidence and after a time lapse the same plate is recognized as a correct one which is
shown in the Fig. 8.

Regarding to the environment aspects in the video, such as sunlight, shines, camera
movements, etc. we thought about two different filters to mitigate the effect of the
environment in the plate recognition process. The first filter thought to manipulate
brightness and contrast and the second filter to sharpen the image. Influence of the
sharpener filter is presented in Fig. 7.

Figure 7: Right image without filter, left image with sharpener filter

Second approach was to use a fix image cut instead of the cut given by the contours
method. Execution times are within a range in the fix image cut and with the variable
image execution times can have high range of values. For this task the video was
analyzed to store the coordinates when a plate is recognized Fig. 9. Then the data
was processed in Matlab. The criteria to select the fix coordinates (p1(red), p2(blue),
p3(green), p4(black)) was to calculate the average (points in yellow) of each point
coordinates and then apply it in the algorithm, finally after a experimental test the
coordinates were readjusted (squares in cyan) for a optimal recognition. Processing a
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fix image also means that absolute coordinates(p1(red), p2(blue), p3(green), p4(black))
where the plate was recognized in the Fig. 10 with the average points in yellow. This
feature can be exploited to further improvement of the analysis.

Finally a video test with the sharpener filter has been done. Due to contrast and
brightness filters are currently inefficient implemented in C++ and without filter and a
fix image and anaylising every three frames instead of five, the results in the Table 5
and the excecution times Table 6 represented in clock ticks. Clock ticks are used as
an absolute measure unit, due to known processor speed (3.3 [Ghz]). With 526 total
number of cars that are counted and these statistics, the configuration without filters is
the most optimal to execute. Time analysis in Fig. 11 shows a correct recognition of
correct cars and the interval where wrong cars are detected, between minute 15 and 16
three cars are detected as wrong, in the rest of the time segments one or two cars are
detected as wrong or the plate is corrected by the algorithm.

Table 5: Statistics car count results with and without sharpener filter

Total time | Total cars | Correct | Mean Wrong | Corrected
evaluated count cars confi- cars cars
dence
Analysis | 29m 20s 534 507 70.9633 | 27 94
with
sharp-
ener
filter
Analysis | 29m 20s 532 515 74.7599 | 17 80
without
sharp-
ener
filter

6.3 Estimated traffic data

From the video example, the traffic data shown in Table 7 regarding to number of

—£ars _ Traffic flow can be also estimated in 1088 £47%
country hour
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Figure 8: Flow chart of the recognize method
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Figure 9: Example of coordinates scatter where images are extracted to recognize the
license plate by CARMEN.

Figure 10: Example of coordinates scatter where the plates are mostly recognized by
CARMEN.
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Table 6: Excecution times with and without sharpener filter

Contours for loop Processing Image with Car | Recognize method
Max Min Max Min Max Min
time time time time time time
Analysis | 1718 100 1709 100 1650 50
with
sharp-
ener
filter
Analysis | 1218 106 1206 90 1138 34
without
sharp-
ener
filter
Correct Cars Arrival Time
5001~ ‘ ‘ =
400 —
2 3001 E
S 2001~ —
100~ *
o 2(‘)0 4(‘)0 6(‘)0 8(‘)0 10‘00 12‘00 14‘00 16‘00
Time(s)
Wrong Cars Recognized interval 60 seconds
5 T T T T
o |
g3 ]
g, |
i
GO 2(‘)0 4(‘)0 6(‘)0 8‘00 Time(s) 1000 1200 1400 1600 1800

Figure 11: Upper image: Time of correct cars arrival. Lower image: Time statistics of
wrong recognition in 60 seconds interval.
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Table 7: Traffic data compiled from the video example

Country Number of Cars | Percentage|%]
Austria 83 15.6
Belgium 6 1.1
Bosnia i Herzegovina 1 0.1
Bulgary 1 0.1
Croatia 47 8.8
Czech Republic 72 13.5
Finland 2 0.3
France 5 0.9
Lithuania 1 0.1
Germany 166 31.2
Hungary 5 0.9
Italy 3 0.5
Netherlands 1 0.1
Poland 88 16.5
Slovakia 11 2.0
Slovenia 17 32
Switzerland 2 0.3
Turkey 13 24
Unknown 8 1.5
Total Cars 532 100
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7 Conclusion and Future work

First to sum up the work done. The traffic network bases and architecture were set. For
this purpose a video example of a highway with real world traffic flow was analyzed.
From the investigation the data necessary to improve execution times, algorithms and to
set constrains to perform the program efficiently were extracted, analyzed and applied
in the program.

Execution time was improved, with the hypothesis that the vehicle plates can be
recognized in a specific area of the image. Video example was analyzed and the in-
formation necessary was extracted to implement the fix image extraction, this reduced
the execution time compared with the dynamic image extraction. Second the images
that are sent to recognize method at first were saved on a hard disk with jpeg format
and then loaded, then they were saved in cache. Performance efficiency was improved
from the development of the algorithm, the goal is to register the most correct vehi-
cle plates without repeating or correcting supposed wrong plates. With this objective
a traffic plates filter was implemented with the most frequent cases on the real world
traffic node. As a result after the internship of the first author, the execution time and
the code were optimized with the resources available for the investigation.

For further work various new technologies should be examined. Such technologies
include SIMD capability like ones on GPU (CUDA, vertex and pixel shaders, etc.) and
CPU (instruction sets of SSE type). Algorithms should support a multicore CPU where
they need to work on multiple threads simulatenously to achieve a higher performance.

However the research was done over few samples and it’s matter of further investi-
gation to cover more cases, generalize the method to make the fix image size adaptation
automatic to all kind of video footages that can be processed. So these cases should be
investigated in depth in the future. On the other hand, the line of investigation should
go in the direction to create the network with several input and output nodes, manage
additional vehicle data (time, positions, distances) to enable computation of additional
statistics for the OD estimation and finally perform the described OD estimation pro-
cedure in a real time system.
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