COMPUTER VISION AND INTELLIGENT SYSTEMS IN ROAD TRAFFIC CONTROL

Edouard Ivanjko, Martin Gregurić, Kristian Kovačić, Sadko Mandžuka, Hrvoje Gold

edouard.ivanjko@fpz.hr
University of Zagreb, Croatia
- Established in 1669.
- 29 faculties and 3 academies
- 4,850 research staff members and 50,000 students

Faculty of Transport and Traffic Sciences
- Established in 1984.
- 15 departments
 - Cover all transport modes, logistics, ITS, aeronautics
- 100 research staff members / 2200 students
- Publisher of the journal
 PROMET – Traffic&Transportation
 - Cited in SCIE, TRIS, Geobase, FLUIDEX, and Scopus
Outline

- Introduction
- Computer vision in road traffic
- Experimental results
- Ramp metering
- Intelligent cooperative ramp metering
- Experimental results
- Conclusion & Future work
• Today’s local urban roads, urban highways and they interconnections cannot fulfil desired level of service (LoS) due congestions caused by
 – Large demand for mobility at peak hours
 – Lack of space for infrastructural build-up
 – Urban network serves local and transit traffic

• Solution in intelligent transport systems (ITS) based traffic control systems
 – Ramp metering
 – Variable Speed Limit Control (VSLC)
 – Optimization of traffic lights signal planes
 – Various driver information systems, etc.
• ITS state-of-the-art solution for urban traffic control
 – Application of hybrid intelligent system in control
 – Cooperation between several traffic control systems
• Reliable real-time measurements of traffic parameters is required for ITS control systems
• State-of-the-art solution is in real-time video surveillance and computer vision application
 – Several traffic parameters can be estimated from road traffic video footage
 • Origin-Destination (OD) matrices
 • Vehicle class, trajectories and velocity
 • Estimation of vehicle country of origin using license plate recognition, etc.
• Problem with video cameras used for real time traffic parameters measurement
 – Weather conditions
 – One camera per road lane
• Tracking vehicles on multiple lanes simultaneously with only one camera
• Preprocessing algorithm
 – Noise reduction
 – Gaussian filter with 5x5 matrix
• **Background subtraction method**
 (a) Creation of background image model
 (b) Detection of foreground objects

• **Object clustering method**
 – Check if adjacent pixels exist and combine them into cluster
 – If cluster area $A \leq threshold$, remove cluster
• **Object tracking method**
 - Compare all objects in the new frame with objects in the previous frame and combine only those with maximal weight w

• **Postprocessing object location**
 - Extended Kalman Filter (EKF)
 - Histogram for computing average values of position (x, y), velocity (v), acceleration (a), direction (ϕ), angular velocity (ω) based on EKF output
 - Setting initial values of state vector x by histogram

$$w_{\text{dist}} = 1 - \frac{d - d_{\text{min}}}{d_{\text{max}} - d_{\text{min}}}$$

$$w_{\text{area}} = 1 - \frac{a - a_{\text{min}}}{a_{\text{max}} - a_{\text{min}}}$$

$$w_{\text{cover}} = \frac{a_{\text{is}}}{\max(a_{\text{obj}}, a_{\text{cl}})}$$

$$w = \frac{w_{\text{dist}} + w_{\text{area}} + w_{\text{cover}}}{3}$$
• Optimization for real-time execution
 • Executing algorithms on GPU as much as possible
 • Adding support for CPU SIMD instructions to algorithms which are incapable to run on GPU
 • Performing computations using multiple threads
 • Parallelization of image processing algorithms
Experimental results Vehicle detection accuracy

- **Vehicle counting approaches**
 - Check if vehicle bounding box / trajectory is overlapping with one of virtual markers

<table>
<thead>
<tr>
<th>Approach</th>
<th>Vehicle count per lane</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Left</td>
</tr>
<tr>
<td>Overlap check</td>
<td>Hits</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>FP / FN</td>
<td>0 / 6</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>95,6%</td>
</tr>
<tr>
<td>Trajectory check</td>
<td>Hits</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>FP / FN</td>
<td>1 / 4</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>96,2%</td>
</tr>
<tr>
<td>True vehicle count</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

UNIZG-FTTS
Algeria, Batna, 14. – 15. October 2014
Experimental results

Vehicle trajectory estimation accuracy

- Simulation of 3D road traffic scene with known parameters
 - Synthetic environment designed in Autodesk 3ds Max
 - Noise added to measured trajectory
- Uncontrolled platooned vehicle entry from on-ramps (urban arterial roads) into mainstream (urban highway) induce
 - Slowdowns in mainstream
 - Downstream bottleneck
 - Traffic „shock wave“ upstream back-propagation
 - Queues at on-ramps
 - Traffic can spill over onto urban arterial roads
 - Higher risk of incidents
• Urban highway control approach **ramp metering**
 – Special road signals (traffic lights) at on-ramps
 – Ramp metering algorithm determines the "access rate reduction," according to traffic data from sensors
 – Ramp metering control algorithm
 • Local (only one on-ramp)
 – ALINEA
 – Demand-Capacity
 • Cooperative
 – Competitive
 » SWARM
 » Bottleneck
 – Comparative
 » HELPER
 » LINKED
 – Integrated
 » *Fuzzy* logic based, MATALINE, etc.
• Matlab based macroscopic highway traffic simulator for ramp metering evaluation
 – Based on the Asymmetric Cell Transmission Model
• Original version contains local ramp metering only
• Augmentation for cooperative ramp metering and VSLC
- Fluctuations in traffic demand is a significant traffic problem on urban highways
 - One metering strategy cannot respond on every traffic situation

- Learning framework for intelligent cooperative ramp metering
 - Summarized knowledge from several different ramp metering strategies into one control structure
 - Cooperation between different ramp metering strategies

Intelligent cooperative ramp metering
• Application of hybrid intelligent system in ramp metering control

 – Adaptive neural-fuzzy inference system (ANFIS)
 • Neural Network (ANN) – learning component
 • Fuzzy Inference System (FIS) – uncertainty component

 – ANFIS algorithm learned using several standard ramp metering algorithms
 • HELPER - cooperative knowledge
 • ALINEA – local control
 • SWARM – predictive component
• Zagreb bypass urban highway, section between nodes Lučko and Jankomir as use case
• Congestion created near node Lučko
• Quality measures
 – Travel time (TT)
 – Delay
 – LoS categorization according to HCM 2010
 – Average on-ramp queue length

<table>
<thead>
<tr>
<th>No Control</th>
<th>No Control</th>
<th>ALINEA</th>
<th>SWARM</th>
<th>HELPER</th>
<th>VSRC</th>
<th>HELPER + VSRC</th>
<th>ANFIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LoS</td>
<td>E</td>
<td>D</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>Average TT [min]</td>
<td>14.32</td>
<td>5.61</td>
<td>3.99</td>
<td>4.41</td>
<td>11.01</td>
<td>4.63</td>
<td>6.42</td>
</tr>
<tr>
<td>Average Delay [vh]</td>
<td>5.42</td>
<td>20.53</td>
<td>24.18</td>
<td>10.94</td>
<td>4.51</td>
<td>7.62</td>
<td>6.75</td>
</tr>
<tr>
<td>Average Queue [v]</td>
<td>0</td>
<td>79</td>
<td>89</td>
<td>58</td>
<td>13</td>
<td>57</td>
<td>38</td>
</tr>
</tbody>
</table>
System based on computer vision methods is capable to
- Detect and track vehicles
- Provide traffic flow measure
- Easily be integrated in existing road traffic measurement systems
- Obtain traffic data from multiple lanes using only one camera

System is tested on video footage from Croatian highways
- Obtained accuracy of the system is over 95%

Intelligent cooperative ramp metering algorithm realized through an ANFIS control structure
- Produce balanced ratio between TT and Delay, second best LoS

Cooperation between ramp metering and VSLC
- Improved results compared to the standalone VSLC and HELPER application

Future work
- Vehicle type classification from road traffic video footage
- Augmentation of ANFIS learning with on-line learning
The research reported in this paper is partially funded by the European Union from the FP7 - Collaborative Project: “Intelligent Cooperative Sensing for Improved traffic efficiency – ICSI” (FP7-317671), from the European Regional Development Fund by the project IPA2007/HR/16IPO/001-040514 “VISTA - Computer Vision Innovations for Safe Traffic” and supported by the EU COST action TU1102 “Towards autonomic road transport support systems”
COMPUTER VISION AND INTELLIGENT SYSTEMS IN ROAD TRAFFIC CONTROL

Edouard Ivanjko, Martin Gregurić, Kristian Kovačić, Sadko Mandžuka, Hrvoje Gold

edouard.ivanjko@fpz.hr
Experimental results

Overall execution time

Execution time distribution per image processing component

UNIZG-FTTS
Algeria, Batna, 14. – 15. October 2014
• Standalone urban highway control strategies not efficient enough to resolve congestions

• Cooperation between ramp metering and
 – VSLC, Selectively prohibiting lane changes, Vehicle On-Board-Unit (OBU) and Driver information systems
Experimental results

24 hour simulation run

- Cooperation between HELPER and VSLC produces smaller Delay compared to standalone HELPER algorithm
- ANFIS produces lowest Delay values compared to other ramp metering algorithms