

SVEUČILIŠTE U ZAGREBU FAKULTET PROMETNIH ZNANOSTI



## **RADIOTELEPHONY COMMUNICATIONS 1**

Handbook

Ivana Francetić, prof.

Zagreb, November 2018

| FC | DREWOR | D                                                              | 4    |
|----|--------|----------------------------------------------------------------|------|
| 1  | RTF    | GENERAL OPERATING PROCEDURES (ATMB 3.1)                        | 5    |
|    | 1.1    | TRANSMITTING TECHNIQUE (ATMB 3.1.2)                            | 5    |
|    | 1.2    | TRANSMISSION OF LETTERS (ATMB 3.1.2)                           | 6    |
|    | 1.3    | TRANSMISSION OF NUMBERS (ATMB 3.1.3)                           | 7    |
|    | 1.4    | EXCEPTIONS TO NUMBERS                                          |      |
|    | 1.5    | VERIFICATION OF NUMBERS                                        | 9    |
|    | 1.6    | TRANSMISSION OF TIME (ATMB 3.1.3)                              | 9    |
|    | 1.7    | CALL SIGNS (ATMB 3.1.6)                                        |      |
|    | 1.7.1  | AERONAUTICAL STATIONS CALL SIGNS                               | . 11 |
|    | 1.7.2  | AIRCRAFT CALL SIGNS                                            | . 12 |
|    | 1.8    | CATEGORIES OF MESSAGES AND ORDER OF PRIORITY                   |      |
| 2  | EST    | ABLISHMENT AND CONTINUATION OF COMMUNICATION                   |      |
|    | 2.1    | INITIAL CALL                                                   |      |
|    | 2.2    | MULTIPLE CALL                                                  | . 18 |
|    | 2.3    | GENERAL CALL                                                   | . 18 |
|    | 2.4    | ACKNOWLEDGEMENT OF MESSAGE RECEIPT                             | . 18 |
| 3  |        | NDARD WORDS AND PHRASES                                        |      |
| 4  |        | CLEARANCES AND ATC INSTRUCTIONS                                |      |
| 5  |        | DBACK REQUIREMENTS                                             |      |
| 6  |        | T PROCEDURES - RADIO CHECK AND READABILITY SCALE (ATMB 3.1.9.) |      |
| 7  |        | ODES (ATMB 3.1.5.)                                             |      |
| 8  |        | TEOROLOGICAL INFORMATION (ATMB 4.2.4)                          |      |
|    | 8.1    | WAKE VORTEX SEPARATION                                         |      |
|    | 8.2    | ESSENTIAL INFORMATION ON AERODROME CONDITIONS                  | . 30 |
|    | 8.3    | RUNWAY SURFACE CONDITIONS                                      | . 31 |
|    | 8.3.1  | AMOUNT OF WATER ON THE RUNWAY                                  | .31  |
|    | 8.3.2  | BRAKING ACTION                                                 | .32  |
|    | 8.4    | WEATHER INFORMATION                                            |      |
|    | 8.4.1  | RUNWAY VISUAL RANGE                                            | .33  |
|    | 8.4.2  | SKY COVERING IN OKTAS                                          | .34  |
|    | 8.4.3  | DEW POINT                                                      | .34  |
|    | 8.5    | VOLMET                                                         | . 35 |
|    | 8.6    | SIGMET                                                         | . 35 |
|    | 8.7    | METAR                                                          | . 36 |
|    | 8.8    | AUTOMATIC TERMINAL INFORMATION SERVICE (ATIS)                  | . 36 |
| 9  |        | DER OF INSTRUCTIONS IN AERODROME CONTROL ENVIRONMENT           |      |
|    | 9.1    | DEPARTURE INFORMATION (ATMB 4.1.1.1.)                          |      |
|    | 9.2    | ENGINE STARTING PROCEDURES (ATMB 4.2.1)                        | .44  |
|    | 9.3    | PUSH-BACK/POWER-BACK PROCEDURES (ATMB 4.2.1)                   |      |
|    | 9.4    | ATC CLEARANCE (ATMB 4.1.1.)                                    |      |
|    | 9.4.1  | IFR ATC CLEARANCE                                              |      |
|    | 9.4.2  | VFR ATC CLEARANCE                                              |      |
|    | 9.5    | TAXI PROCEDURES (ATMB 4.1.1.2)                                 |      |
|    | 9.6    | LINE UP (ATMB 4.1.1.3.)                                        |      |
|    | 9.6.1  | MULTIPLE LINE UPS ON THE SAME RUNWAY                           |      |
|    | 9.6.2  | CONDITIONAL LINE-UP CLEARANCE                                  |      |
|    |        |                                                                |      |

| 9.7    | TAKE OFF CLEARANCE (ATMB 4.1.1.3)                                                | 60    |
|--------|----------------------------------------------------------------------------------|-------|
| 9.7.1  | CANCELLATION OF TAKE-OFF CLEARANCE AT THE HOLDING POINT                          | 63    |
| 9.7.2  | REJECTING THE TAKE OFF CLEARANCE DURING THE TAKE OFF RUN                         | 63    |
| 9.8    | REPORTING AIRBORNE                                                               | 63    |
| 9.9    | AERODROME CONTROL - TRAFFIC INFORMATION (ATMB 4.1.1.4.)                          | 65    |
| 9.10   | GO AROUND (ATMB 4.1.1.5.)                                                        |       |
| 9.11   | LOW APPROACH (ATMB 4.1.1.5.)                                                     |       |
| 9.12   | LOW PASS (ATMB 4.1.1.5.)                                                         |       |
| 9.13   | TOUCH-AND-GO and STOP-AND-GO (ATMB 4.1.1.5.)                                     |       |
| 9.14   | FULL STOP LANDING (ATMB 4.1.1.6.)                                                |       |
| 9.15   | DELAYING ACTIONS                                                                 |       |
|        | 1 MAKING 360/AN ORBIT                                                            |       |
|        | 2 ORBITING                                                                       |       |
| 9.15.3 | 3 EXTENDING DOWNWIND                                                             |       |
| 9.16   |                                                                                  |       |
| 9.17   | JOINING INSTRUCTIONS, FINAL APPROACH AND LANDING (ATMB 4.1.1.5.)                 | 78    |
|        | ERATURE                                                                          |       |
|        | PENDICES                                                                         |       |
|        | VIX 1 VFR chart of Zagreb CTR (LDZA and LDZL) [13]                               |       |
| APPEND | IIX 2: List of location indicators, runway designators and aerodromes in Croatia | a 91  |
|        | IX 3: List of call sign and aerodrome destination abbreviations [15]             |       |
|        | IIX 4: List of Tables                                                            |       |
| APPEND | IIX 5: List of abbreviations                                                     | 94    |
| APPEND | VIX 6: Exercise for RTK I mid-term exam                                          | 95    |
| APPEND | VIX 7: Exercise for RTK I end-of-the-term exam                                   | . 100 |
| APPEND | VIX 8: ICAO Doc 4444 definitions [4]                                             | 103   |

## FOREWORD

"Radiotelephony Communications 1 Handbook" is intended primarily for the second-year students of the undergraduate study programme Aeronautics at the Faculty of Transport and Traffic Sciences, both for air-traffic control and military and civil pilots who have enrolled the subject "Radiotelephony communications I".

The entire subject-matter of the mentioned subject, which is included into the teaching material "Radiotelephony Communications 1 Handbook", is defined by Basic ATCO training plan and program [1] and is accordance with the EASA regulation [2].

The teaching material explains the proper use and pronunciation of radiotelephony alphabet and numbers used on the frequency, standardized phraseology for giving information, ATC clearances and ATC instructions for both VFR and IFR aerodrome traffic (arriving and departing traffic). It provides specific examples of communication between a pilot and an air traffic controller in Zagreb control zone (Zagreb CTR) when runway 05 is the runway-in-use. Various situation scenarios are covered providing communication examples in English starting with the initial call to leaving the zone for the departing VFR and IFR traffic or entering the control zone to vacating the runway for the arriving IFR and VFR traffic.

Pilots' communication is always given on the left side of the page, while the controllers' utterances are printed on the right side of the page.

This material shall be of great help to the students of air traffic control module during the practical simulator exercises which are the essential part of the "Aerodrome simulator" subject being held at the Laboratory for Control of Air Navigation, as well as to pilot students during their practical training exercises.

Teaching material may also be used in commercial training courses for both pilots and air traffic controllers.

Students are encouraged to make practical application of material in their future jobs as air traffic controllers or pilots.

Zagreb, 10th October 2018

The author

## **1** RTF GENERAL OPERATING PROCEDURES (ATMB 3.1)

Pilots and air traffic controllers communicate by using the radiotelephony phraseology that consists of a set of standardized words and phrases. These phrases are prescribed and approved for use on the frequency (for radiotelephony communications) by International Civil Aviation Organization (ICAO) in all routine aircraft situations [3]. The situations the pilots and air-traffic controllers find themselves in are highly predictable, so that the communication is made possible due to their common and work-related topics. Even if misunderstandings do occur, they are rather easily dealt with since both parties involved in the conversation know what replies to expect from each other. Problems arise in non-routine and emergency situations, when pilots and controllers need to switch to plain English because standard phraseology lacks the communicative means for effective communication in unpredictable situations such as on board medical emergencies, engine problems, fuel shortage or acts of unlawful interference. When both parties stick to the rules prescribed, problems in communication will rarely occur. Above all, good transmitting technique is needed.

According to EU regulation [2], standardised phraseology shall be used in all situations for which it has been specified. Only when standardised phraseology cannot serve an intended transmission, plain language shall be used.

## **1.1 TRANSMITTING TECHNIQUE (ATMB 3.1.2)**

According to the Manual of Radiotelephony [3] the following transmitting techniques will assist in ensuring that transmitted speech is clearly and satisfactorily received:

- 1. Before transmitting, listen out on the frequency to be used to ensure that there will be no interference with a transmission from another station.
- 2. Be familiar with good microphone operating techniques.
- 3. Use a normal conversational tone, speak clearly and distinctly.
- 4. Maintain an even rate of speech not exceeding 100 words per minute. When it is known that elements of the message will be written down by recipient, speak at a slightly slower rate.
- 5. Maintain the speaking volume at a constant level.
- 6. A slight pause before and after numbers will assist in making them easier to understand.
- 7. Avoid using hesitation sounds such as "er".
- 8. Depress the transmit switch fully before speaking and do not release it until the message is completed. This will ensure that the entire message is transmitted.
- 9. An irritating and potentially dangerous situation in radiotelephony is a "stuck" microphone button. Operators should always ensure that the button is released after a transmission and the microphone placed in an appropriate place that will ensure that it will not inadvertently be switched on.

## **1.2** TRANSMISSION OF LETTERS (ATMB 3.1.2)

The phonetic words shall be used when individual letters are required to be transmitted. Some abbreviations have become recognizable through frequent usage and are transmitted without using the phonetic word for each letter e.g. ILS, QNH, QFE. Five letter words denoting significant points or navigational aids are pronounced as words e.g. GOLUN, RASIN.

When it is required to transmit individual letters the following words are to be used according to ICAO Annex 10 [4]. The underlined syllables are to be emphasised when being pronounced.

| Letter | Word     | Pronunciation              | Morse code |
|--------|----------|----------------------------|------------|
| А      | Alpha    | <u>AL</u> FAH              | ·_         |
| В      | Bravo    | BRAH VOH                   |            |
| С      | Charlie  | CHAR LEE or SHAR LEE       | _·_·       |
| D      | Delta    | DELL TAH                   |            |
| E      | Echo     | <u>ЕСК</u> ОН              | •          |
| F      | Foxtrot  | <u>FOKS</u> TROT           | ···_·      |
| G      | Golf     | GOLF                       |            |
| Н      | Hotel    | HOH <u>TELL</u>            |            |
| I      | India    | <u>IN</u> DEE AH           | ••         |
| J      | Juliet   | JEW LEE ETT                | ·          |
| К      | Kilo     | KEY LOH                    | _·_        |
| L      | Lima     | LEE MAH                    | · _ · ·    |
| М      | Mike     | MIKE                       |            |
| N      | November | NO <u>VEM</u> BER          |            |
| 0      | Oscar    | OSS CAH                    |            |
| Р      | Рара     | РАН <u>РАН</u>             | ··         |
| Q      | Quebec   | KEH <u>BECK</u>            |            |
| R      | Romeo    | ROW ME OH                  | ·_·        |
| S      | Sierra   | SEE <u>AIR</u> RAH         |            |
| Т      | Tango    | TANG GO                    | _          |
| U      | Uniform  | YOU NEE FORM or OONEE FORM | ··         |
| V      | Victor   | <u>VIK</u> TAH             | ····_      |
| W      | Whiskey  | <u>WISS</u> KEY            | ·          |
| Х      | X -ray   | ECKS RAY                   |            |
| Y      | Yankee   | YANG KEY                   |            |
| Z      | Zulu     | <u>ZOO</u> LOO             |            |

#### Table 1: Radiotelephony spelling alphabet

## 1.3 TRANSMISSION OF NUMBERS (ATMB 3.1.3)

AIC A006/2017 [5] which is based on European regulation [2] clearly states that all numbers shall be transmitted by pronouncing each digit separately. Whole hundreds and whole thousands shall be transmitted by pronouncing each digit in the number of hundreds or thousands followed by the word "HUNDRED" or "THOUSAND". Combinations of thousands and whole hundreds shall be transmitted by pronouncing each digit in the number of hundreds and separately followed by the word "THOUSAND" and the number of hundreds followed by the word "HUNDRED".

Flight levels shall be transmitted by pronouncing each digit separately as well, except in case of flight levels in whole hundreds, when they are pronounced as "ONE HUNDRED", "TWO HUNDRED" etc.

The altimeter setting shall be transmitted by pronouncing each digit separately, except for the case of a setting of 1000 hPa, which shall be transmitted as "ONE THOUSAND".

All numbers used in the transmission of transponder codes shall be transmitted by pronouncing each digit separately except that, when the transponder codes contain whole thousands only, the information shall be transmitted by pronouncing the digit in the number of thousands followed by the word "THOUSAND".

The following examples illustrate the application of this procedure:

| Numeral  | Pronounced as:     |
|----------|--------------------|
| 0        | ZERO               |
| 1        | WUN                |
| 2        | ТОО                |
| 3        | TREE               |
| 4        | FOWER              |
| 5        | FIFE               |
| 6        | SIX                |
| 7        | SEVEN              |
| 8        | AIT                |
| 9        | NINER              |
| Hundred  | <u>HUN</u> DRED    |
| Thousand | <u>TOU</u> SAND    |
| Decimal  | <u>DAY</u> SEE MAL |
| Point    | POINT              |

| ble 2: Pronunciation of numbers |
|---------------------------------|
|---------------------------------|

|        | , ,                        |
|--------|----------------------------|
| Number | Pronounced as:             |
| 10     | WUN ZE-RO                  |
| 75     | SEV-en FIFE                |
| 100    | WUN HUN-dred               |
| 583    | FIFE AIT TREE              |
| 2500   | TOO TOU-SAND FIFE HUN-dred |
| 5000   | FIFE TOU-SAND              |
| 11000  | WUN WUN TOU-SAND           |
| 18900  | WUN AIT TOU-SAND NIN-er    |
|        | HUN-dred                   |
| 25000  | TOO FIFE TOU-SAND          |
| 38143  | TREE AIT WUN FOW-er TREE   |
|        |                            |

Table 3: Pronunciation of more digit numbers

In cases where there is a need to clarify the number transmitted as whole thousands and/or whole hundreds, the number shall be transmitted by pronouncing each digit separately.

Numbers containing a decimal point shall be transmitted with the decimal point in appropriate sequence being indicated by the word "DECIMAL" (in case of frequencies) or "POINT" (in all other cases; Mach number, distance). All six digits of the numerical designator shall be used to identify the transmitting channel in very high frequency (VHF) radiotelephony communications, except in the case of both the fifth and sixth digits being zeros, in which case only the first four digits shall be used.

Example of reporting distance:

| АТСО                    | PILOT                              |
|-------------------------|------------------------------------|
| CTN123, report distance |                                    |
|                         | CTN123, distance 7.5 miles ZAG DME |
|                         | (seven point fife)                 |

Example of reporting Mach number:

| CTN123, report Mach number          |                                 |
|-------------------------------------|---------------------------------|
|                                     | CTN123, 0.75 (point seven fife) |
| CTN123, reduce to 0.72 (point seven |                                 |
| two).                               |                                 |

Table 4: Pronunciation of numbers containing decimal point

| Number    | Transmitted as:                       |
|-----------|---------------------------------------|
| 0,72 Mach | MACH POINT SEVEN TWO                  |
| 1,2 Mach  | MACH ONE POINT TWO                    |
| 25,5 NM   | TWO FIFE POINT FIFE MILES             |
| 120.375   | ONE TWO ZERO DECIMAL THREE SEVEN FIVE |
| 118.000   | ONE ONE EIGHT DECIMAL ZERO            |
| 118.005   | ONE ONE EIGHT DECIMAL ZERO ZERO FIVE  |
| 118.050   | ONE ONE EIGHT DECIMAL ZERO FIVE ZERO  |
| 118.125   | ONE ONE EIGHT DECIMAL ONE TWO FIVE    |
| 118.150   | ONE ONE EIGHT DECIMAL ONE FIVE ZERO   |
| 118,300   | ONE ONE EIGHT DECIMAL TREE            |

## **1.4 EXCEPTIONS TO NUMBERS**

Excepted from these, above mentioned regulations are:

- Passing traffic information in radar environment regarding the relative bearing to an object or to conflicting traffic in terms of 12-hour. Then numbers 10, 11, 12 shall be transmitted as "TEN", "ELEVEN" or "TWELVE" o'clock (e.g. "CTN662, traffic information, traffic is at 12 o'clock, 6 miles, passing left to right, B737, FL 350")
- When transmitting numbers in aircraft call sign, headings (track, radial), runway, wind direction and speed, numbers shall be pronounced each digit separately (e.g. heading 300 shall be pronounced as "TREE ZERO ZERO")
- 3. When giving instruction to fly a 360° turn, (e.g. "Make a TREE SIXTY turn to the left.")
- 4. When giving instruction to make a U-turn on ground, (e.g. "Make ONE EIGHTY turn".)
- 5. When reporting visibility 9999 in transmission of METAR information "over 10km" is pronounced TEN.

## **1.5 VERIFICATION OF NUMBERS**

When necessary to verify the accurate reception of numbers, the person transmitting the message shall request the person receiving the message to read back the numbers.

#### 1.6 TRANSMISSION OF TIME (ATMB 3.1.3)

All time references should be made in Co-ordinated universal time (UTC). This used to be called Greenwich Mean Time (GMT). This time zone is sometimes referred to as Zulu (Z). Time is always in the 24-hour clock. 2400 is midnight and 0001 begins the new day.

When transmitting time, only the minutes of the hour are normally required, each figure being pronounced separately.

However, if there is any possibility of confusion or if crossing the hour, the full four-figure group of numbers will be spoken. Correct time, expected approach time (EAT and revised EAT) and SLOT time are to be spoken in hours and minutes (in four figures). EAT and SLOT are to be read back always.

Apart from UTC (Co-ordinated universal time), estimated times of arrival may sometimes be given as local time.

#### Table 5: Transmission of time

| Time         | Statement                 |
|--------------|---------------------------|
| 0920         | TWO ZERO or               |
|              | ZERO NINER TWO ZERO       |
| EAT 1015     | EAT ONE ZERO ONE FIFE     |
| CORRECT TIME | CORRECT TIME TWO ZERO ONE |
| 2010         | ZERO                      |
| 1300         | WUN TREE ZE-RO ZE-RO      |
| 2057         | TOO ZE-RO FIFE SEV-en     |

Pilot may check the time with the appropriate ATS unit. Time check shall be given to the nearest full minute. (It used to be half minute in the past.)

Example of time check:

|                    | CTN 654, request time check |
|--------------------|-----------------------------|
| CTN 654, time 0611 |                             |
| CTN 654, time 0715 |                             |

#### **Exercise 1: Numbers in aviation context**

Each student is to read out the number from each of the table. Circle them as you hear them. Decide what do numbers contained in each table indicate.

| A       |         |  |  |
|---------|---------|--|--|
| 05      | 14      |  |  |
| 32      | 09      |  |  |
| 22      | 27      |  |  |
| 10      | 35      |  |  |
| 07      | 23      |  |  |
| В       |         |  |  |
| 250     | 186     |  |  |
| 187     | 119     |  |  |
| 256     | 085     |  |  |
| 006     | 120     |  |  |
| 180     | 305     |  |  |
| С       |         |  |  |
| 119.300 | 125.250 |  |  |
| 119.025 | 126.700 |  |  |

| В       |         |         |
|---------|---------|---------|
| 250     | 186     | 340     |
| 187     | 119     | 191     |
| 256     | 085     | 153     |
| 006     | 120     | 275     |
| 180     | 305     | 075     |
| С       |         |         |
| 119.300 | 125.250 | 121.000 |
| 119.025 | 126.700 | 135.850 |
| 118.275 | 118.125 | 118.025 |
| 123.750 | 100.300 | 114.900 |
| 117.005 | 119.250 | 122.025 |

| D    |      |      |
|------|------|------|
| 1013 | 1029 | 1000 |
| 1022 | 1017 | 997  |
| 1001 | 1031 | 995  |
| 998  | 1005 | 1020 |
| 1010 | 999  | 1009 |

Е

| 2412 | 0626 | 5114 |
|------|------|------|
| 1333 | 1404 | 5124 |
| 6534 | 2456 | 7432 |
| 1414 | 1455 | 0646 |
| 0015 | 6324 | 4057 |
| -    |      |      |

| 1,900  | 5,000  | 12,000 |
|--------|--------|--------|
| 500    | 17,900 | 18,000 |
| 23,000 | 14,500 | 800    |
| 8,000  | 6,500  | 1,700  |
| 3,500  | 1,500  | 2,500  |
|        |        |        |

## 1.7 CALL SIGNS (ATMB 3.1.6)

ICAO, Annex 10, Chapter 5 distinguishes two types of call signs. Call signs can be considered as names used in aviation to identify aircraft stations and aeronautical stations which are in fact stations on the ground.

## **1.7.1 AERONAUTICAL STATIONS CALL SIGNS**

Call signs of aeronautical stations are prescribed in Manual of Radiotelephony [3]. They consist of two parts, the name of the location they are serving or are situated at and by a suffix denoting unit or the type of service provided.

Table 6: Aeronautical station call signs

| UNIT OR SERVICE                   | CALL SIGN SUFFIX |
|-----------------------------------|------------------|
| Aerodrome control                 | TOWER            |
| Aeronautical station              | RADIO            |
| Approach control                  | APPROACH         |
| Approach control radar arrivals   | ARRIVAL          |
| Approach control radar departures | DEPARTURE        |
| Apron control                     | APRON            |
| Area control centre               | CONTROL          |
| Clearance delivery                | DELIVERY         |
| Company dispatch                  | DISPATCH         |
| Company/Aerodrome Handling        | OPERATIONS       |
| Direction finding station         | HOMER            |
| Flight information service        | INFORMATION      |
| Precision approach radar          | PRECISION        |
| Radar (in general)                | RADAR            |
| Surface movement control          | GROUND           |

When satisfactory communication has been established, i.e. after the initial call and provided that it will not be confusing, the name of the location or the call sign suffix may be omitted. During the communication between the pilot and the air-traffic controller, only the aircraft call sign is being used.

## 1.7.2 AIRCRAFT CALL SIGNS

Aircraft call signs may contain a maximum of seven characters. There are three types of aircraft call sign according to how they are formed:

- a) the characters corresponding to the registration marking of the aircraft; GABCD or Cessna GABCD. (The name of the aircraft manufacturer or name of aircraft model may be used as a radiotelephony prefix);
- b) the telephony designator of the aircraft operator, followed by the last four characters of the registration marking of the aircraft; Speedbird DCAB;
- c) the telephony designator of the aircraft operator, followed by the flight identification; CTN662.

Full radiotelephony call signs shall always be used when establishing communication i.e. in initial call. An aircraft shall not change its type of call sign during the flight except when there is a possibility that confusion may occur because of similar call sign. Then, an aircraft may be instructed by an air traffic control unit to change the type of its call sign temporarily:

1. instruction to change its type of call sign:

CHANGE YOUR CALL SIGN TO (new call sign) [UNTIL FURTHER ADVISED]; (when transferred to another ATC unit except when callsign change has been coordinated with them)

 instruction to an aircraft to revert to the call sign indicated in the flight plan: REVERT TO FLIGHT PLAN CALL SIGN (call sign) [AT (significant point)].

Aircraft call sign may be abbreviated only after:

- 1. satisfactory communication has been established;
- 2. it has been addressed in this manner by the aeronautical station;
- 3. and provided that no confusion is likely to occur.

Aircraft call signs may be abbreviated in the following way:

- a) the first character of the registration and at least the last two characters of the call sign (GCD or; Cessna CD);
- b) the telephony designator of the aircraft operator followed by at least the last two characters of the aircraft call sign (Speedbird AB);
- c) No abbreviated form (CTN662).

Table 7: Aircraft call signs

| ТҮРЕ   | FULL CALL SIGN   | ABBREVIATED CALL SIGN |
|--------|------------------|-----------------------|
| TYPE A | CESSNA FABCD     | CESSNA CD             |
|        | N57826           | N26                   |
| TYPE B | VARIG PVMA       | VARIG MA              |
| TYPE C | SCANDINAVIAN 937 | SCANDINAVIAN 937      |

Aircraft in the heavy wake turbulence category shall include the word "HEAVY" immediately after the aircraft call sign in the initial contact between such aircraft and ATS units.

#### Exercise 2: Call signs

Abbreviate the following call signs.

| DLH235 | PIPER G6768 | BAW872 | GABCD | CITATION FAMKL | SENECA NHTRY | 9AGFE |
|--------|-------------|--------|-------|----------------|--------------|-------|
|        |             |        |       |                |              |       |

#### **1.8 CATEGORIES OF MESSAGES AND ORDER OF PRIORITY**

According to ICAO Annex 10 [4] all the communication between pilots and air traffic controllers can be categorised into six categories of messages depending on the priority of information being transmitted. Croatian regulation AIC A006/2017 [5] distinguishes the 7<sup>th</sup> type, called state telegram Here are the categories:

1. Distress messages (distress calls, distress traffic)

It is a condition (those concerning aircraft and passengers) of being threatened by serious and/or imminent danger and of requiring immediate assistance. Radiotelephony signal to be used are words MAYDAY.

#### 2. Urgency messages

It is a condition concerning the safety of an aircraft or other vehicle, or of some person on board or within sight, but which does not require immediate assistance. Radiotelephony signal indicating urgency messages are words PAN, PAN or PAN, PAN MEDICAL.

Medical transport represents "any means of transportation by land, water, or air, whether military or civilian, permanent or temporary, assigned exclusively to medical transportation and under the control of a competent authority of a Party to the conflict".

#### 3. Direction finding message

It is communication relating to direction finding, VDF using Q codes, radar vectors i.e. messages for transmission of direction finding values

#### 4. Flight safety messages

- movement and control messages;
- all messages originated by an aircraft operating agency or by an aircraft, of immediate concern to an aircraft in flight;
- meteorological advice of immediate concern to an aircraft in flight or about to depart (individually communicated or for broadcast);
- and all other messages concerning aircraft in flight or about to depart.

#### 5. Meteorological messages

These are reports, forecasts, warnings. Messages which comprise meteorological information to or from aircraft (other than those under flight safety messages).

- 6. Flight regularity messages
  - messages regarding the operation or maintenance of facilities essential for the safety or regularity of aircraft operation;
  - messages concerning the servicing of aircraft;
  - instructions to aircraft operating agency representatives concerning changes in requirements for passengers and crew caused by unavoidable deviations from normal operating schedules.
  - messages concerning non-routine landings to be made by the aircraft;
  - messages concerning aircraft parts or materials urgently required;
  - messages concerning changes in aircraft operating schedules.
  - (ATSU using direct pilot-controller communication channels shall only be required to handle flight regularity messages provided this can be achieved without interference with their primary role and no other channels are available for the handling of such messages.)
- 7. State telegram used in Croatian airspace

Note: Categories of messages under 6 and 7 shall be transmitted on the FIS or another frequency assigned by ATC unit to avoid interference with ATC.

#### **Exercise 3: Corrections**

Read the sentences and then correct yourself using the information in the brackets:

- 1. AFR101, climb to FL 180 (170)
- 2. CTN123, Maintain FL 260 (160)
- 3. 9ADDA, Reduce speed to 240 (140) kt
- 4. SAS334, cleared to land RWY 13, (31), wind 120/5
- 5. 9ACTR, estimating ILB at 45 (54)
- 6. MPH662, contact Ljubljana Control 187,875 (128,875)
- 7. 9ADDA, traffic is Cessna 152 (172) from Lučko to N3 point at 1500ft.
- 8. BAW445, turn left heading 156 (165).
- 9. OAL662, traffic information, traffic is at 9 o'clock, 8 miles (12), crossing left to right, fast moving
- 10. SWR152, taxi via taxiway C, turn left to D (E) to holding point RWY 08.
- 11. 9AZVJ, Pula Tower, departure RWY 09, wind 060/10 knots, (050/9) QNH 999, temp. 25/4, correct time 1645
- 12. UAE123, 31 miles DME on radial 052 ZAG VOR, (VBA VOR) maintaining FL 330.
- 13. MAH554, cleared for take-off RWY 25, wind 220/16, (6kt)
- 14. TAR 123, climb to 3500 ft, (2500).
- 15. 9ABCD, increase speed to 350 (250) kt
- 16. AAL537, cleared to land RWY 62, (26), wind 200/10
- 17. UAL642, contact Budapest Radar 187,875 (128,875)

## **2** ESTABLISHMENT AND CONTINUATION OF COMMUNICATION

In radiotelephony communications it is considered that the communication has been established after the station being called has answered the call being made by the station calling. After the initial call, only the aircraft call sign shall be used and the aeronautical station call sign is omitted since there can be many aircraft under jurisdiction of the same aeronautical station and communicating with it during a certain time.

## 2.1 INITIAL CALL

Initial call is the call usually initiated by the pilot and it consists of the pilot's message and the controller's reply. When establishing RT communications, if the pilot initiates it, s/he shall use the full call sign of aeronautical station and the full aircraft call sign. The contact is established when the called station replies using full call sign of the station calling and the station being called. Again, (EU) 2016/1185 [2] clearly states how and when to use initial call.

Unless otherwise prescribed by the ANSP responsible for the provision of services and approved by the competent authority, the initial call to an ATS unit after a change of airground voice communication channel shall contain the following elements:

- 1. the designation of the ATS unit being called;
- call sign and, for aircraft in the heavy wake turbulence category, the word "Heavy" or "Super" if that aircraft has been so identified by the competent authority;
- 3. level, including passing and cleared levels, if not maintaining the cleared level; (pilots shall provide level information at the nearest full 30 m or 100 ft as indicated on the pilot's altimeter);
- 4. speed, if assigned by ATC; and
- 5. additional elements, as required by the ANSP responsible for the provision of services and approved by the competent authority.

Initial call to aerodrome control tower for aircraft being provided with aerodrome control service, shall contain:

- 1. the designation of the ATS unit being called;
- 2. call sign and, for aircraft in the heavy wake turbulence category, the word "Heavy" or "Super" if that aircraft has been so identified by the competent authority;
- 3. position;
- 4. additional elements, as required by the ANSP responsible for the provision of services and approved by the competent authority.

After the initial call, only the aircraft call sign is to be used. When a station is called, but it is not certain what the identification of the station calling is, the calling station should be requested to repeat its call sign until identification is established.

| ATCO                          | PILOT                              |
|-------------------------------|------------------------------------|
|                               | ZAGREB TOWER, 9ADDC, request start |
|                               | up                                 |
| 9ADDC, ZAGREB TOWER, start up |                                    |
| approved.                     |                                    |

Station calling Pula Tower, say again call sign.

Pula Tower, CTN345

Pula Tower, ----- 345

|                                              | All stations, CTN622 request assistance    |  |
|----------------------------------------------|--------------------------------------------|--|
|                                              | for Split, relay the message (no call sign |  |
|                                              | was heard).                                |  |
| Station calling Zagreb Tower, say again call |                                            |  |
| sign                                         |                                            |  |

#### **Exercise 4: Initial call**

Make initial calls using the data from the table.

| ATC   | Zagreb | Dubrovnik | Osijek | Budapest | Brač  | Vienna | Lučko |
|-------|--------|-----------|--------|----------|-------|--------|-------|
|       | ACC    | TWR       | APP    | ACC      | TWR   | APP    | TWR   |
| PILOT | 9ADDA  | BAW2345   | 9ADMS  | CTN359   | OE976 | AUA248 | 9ADAS |

| 1. |  |
|----|--|
|    |  |
| 2. |  |
|    |  |
| 3. |  |
| 5. |  |
|    |  |
| 4. |  |
|    |  |
| 5. |  |
|    |  |
| 6. |  |
|    |  |
|    |  |

## 2.2 MULTIPLE CALL

Stations in the aeronautical mobile service may simultaneously call several stations. Stations called in multiple call shall acknowledge receipt of the message in the sequence used by the calling station. It is not used in transmission of ATC clearances.

Example of multiple call

| CTN380, AZA234, DLH424, monitor ATIS |  |
|--------------------------------------|--|
| information C.                       |  |

## 2.3 GENERAL CALL

When an aeronautical station broadcasts information to all stations on the same frequency, the message should be prefaced by "all stations", followed by the call sign of the transmitting station. Aircraft (pilot) shall not attempt to acknowledge the receipt of the general call message.

Example of general call

| All stations, Zagreb Tower, anti-hail activity |  |
|------------------------------------------------|--|
| south of the aerodrome completed.              |  |

#### 2.4 ACKNOWLEDGEMENT OF MESSAGE RECEIPT

Acknowledgement of the receipt of aircraft/aeronautical station message is made by transmission of the aircraft call sign and the word ROGER may be added.

Example of message receipt acknowledgment:

Fastair 345 unable to comply, TCAS Resolution Advisory Fastair 345, Roger.

## **3** STANDARD WORDS AND PHRASES

According to ICAO Annex 10 [4] the following phrases and their meanings are to be used in standard communication between pilots and air traffic controllers. Phrases written in italics are being still used in everyday radiotelephony communication but have been excluded from the ICAO documents.

| PHRASE        | DEFINITION                                                                |
|---------------|---------------------------------------------------------------------------|
| ACKNOWLEDGE   | Let me know that you received and understood this message.                |
| ADVISE        | Tell us/Inform us on/of/about                                             |
| AFFIRM        | Yes.                                                                      |
| AIRBORNE (HR) | The time the flight has started after the take-off phase.                 |
| APPROVED      | Permission for proposed action granted.                                   |
| BREAK         | I hereby indicate the separation between portions of the message. (To     |
|               | be used where there is no clear distinction between the text and other    |
|               | portions of the message.)                                                 |
| BREAK BREAK   | I hereby indicate the separation between messages transmitted to          |
|               | different addressees in a very busy environment.                          |
| CANCEL        | Annul the previously transmitted clearance.                               |
| CAUTION (HR)  | Beware of the following conditions or situations.                         |
| CHECK         | Examine a system or procedure. (No answer is normally expected.)          |
| CLEARED       | Authorized to proceed under the conditions specified.                     |
| CLIMB         | Climb to maintain (to level out).                                         |
| COMPLY        | Act in compliance with a request or instruction.                          |
| CONFIRM       | I request verification of: (clearance, instruction, action, information). |
| CONTACT       | Establish communications with                                             |
| CORRECT       | True or accurate.                                                         |
| CORRECTION    | An error has been made in this transmission (or message indicated).       |
|               | The correct version is                                                    |
| CROSS         | Fly/taxi across. Pass from one side to the other side of                  |
| DEPART        | Leave.                                                                    |
| DEPARTURE     | Take-off, departing.                                                      |
| DESCEND       | Descend to maintain (to level out).                                       |
| DISREGARD     | Ignore.                                                                   |
| ESTIMATE      | Calculate/make approximate calculation.                                   |
| EXPEDITE      | Speed up, increase speed/rate.                                            |
| HOLD          | Keep in place or condition.                                               |

Table 8: Standard words and phrases

| HOLD SHORT      | Keep at a distance/keep away of/ stop before reaching the specified location                                     |
|-----------------|------------------------------------------------------------------------------------------------------------------|
| HOW DO YOU READ | What is the readability of my transmission?                                                                      |
| IMMEDIATEL(LY)  | At once, without delay due immanent risk/hazard                                                                  |
| I SAY AGAIN     | I repeat for clarity or emphasis.                                                                                |
| LEAVE           | Depart, abandon, go away from.                                                                                   |
| LOOK OUT (FOR)  | View over, survey inspection (watch out for immanent risk/hazard.)                                               |
| MAINTAIN        | Continue in accordance with the condition(s) specified or in its literal sense, e.g. Maintain VFR.               |
| MONITOR         | Listen out on (frequency).                                                                                       |
| NEGATIVE        | No/Permission not granted/That is not correct/Not capable.                                                       |
| OUT             | This exchange of transmission is ended and no response is expected.<br>(Not normally used in VHF communications) |
| OVER            | My transmission is ended and I expect a response from you. (Not                                                  |
|                 | normally used in VHF communications)                                                                             |
| READ            | Hear and understand                                                                                              |
| READ BACK       | Repeat all, or the specified part of this message back to me exactly as received.                                |
| RECLEARED       | A change has been made to your last clearance and this new clearance                                             |
|                 | supersedes your previous clearance or part thereof.                                                              |
| REPORT          | Pass me the following information                                                                                |
| REQUEST         | I should like to know/I wish to obtain                                                                           |
| REVISION        | Reconsidered or corrected version/calculation of time.                                                           |
| ROGER           | I have received all of your last transmission.                                                                   |
| SAY AGAIN       | Repeat all, or the following part of your last transmission.                                                     |
| SLOW DOWN       | Reduce your speed                                                                                                |
| SPEAK SLOWER    | Reduce your rate of speech.                                                                                      |
| SQUAWK          | Set the mode/code as instructed.                                                                                 |
| STANDBY         | Wait and I will call you.                                                                                        |
| UNABLE          | I cannot comply with your request, instruction or clearance. (normally                                           |
|                 | followed by a reason)                                                                                            |
| VERIFY          | Check and confirm with originator.                                                                               |
| WILCO           | I understand your message and will comply with it.                                                               |
| WORDS TWICE     | a) As a request: Communication is difficult. Please send every word, or                                          |
|                 | group of words, twice.<br>b) As information: Since communication is difficult, every word, or                    |
|                 | group of words, in this message will be sent twice.                                                              |
|                 | Broup of words, in this message will be sent twite.                                                              |

## 4 ATC CLEARANCES AND ATC INSTRUCTIONS

Manual or Radiotelephony [3] distinguishes ATC clearance from ATC instruction.

Air traffic control clearance is an authorization for an aircraft to proceed under conditions specified by an air traffic control unit. For convenience, the term "air traffic control clearance" is frequently abbreviated to "clearance" when used in appropriate contexts. The abbreviated term "clearance" may be prefixed by the words "taxi", "take-off", "departure", "en-route", "approach" or "landing" to indicate the particular portion of flight to which the air traffic control clearance relates.

Air traffic control instructions are directives issued by air traffic control for the purpose of requiring a pilot to take a specific action.

Other related term which are used closely related to RTF:

- 'controlled flight' means any flight which is subject to an air traffic control clearance;
- 'clearance limit' means the point to which an aircraft is granted an air traffic control clearance;
- 'downstream clearance' means a clearance issued to an aircraft by an air traffic control unit that is not the current controlling authority of that aircraft;

ATC clearance shall indicate:

- aircraft identification as shown in the flight plan;
- clearance limit;
- route of flight;
- level(s) of flight for the entire route or part thereof and changes of levels if required;
- any necessary instructions or information on other matters such as approach or departure manoeuvres, communications and the time of expiry of the clearance.

The flight crew shall read back to the air traffic controller safety-related parts of ATC clearances and instructions which are transmitted by voice. Voice read-back of CPDLC messages shall not be required, unless otherwise specified by the ANSP.

Other clearances or instructions, including conditional clearances and taxi instructions, shall be read back or acknowledged in a manner to clearly indicate that they have been understood and will be complied with.

The controller shall listen to the read-back to ascertain that the clearance or instruction has been correctly acknowledged by the flight crew and shall take immediate action to correct any discrepancies revealed by the read-back.

#### Exercise 5: Phrases

Match the phrases in the box to the definitions A to T. (RMIT [6])

|   | •                                         |   |                                                |
|---|-------------------------------------------|---|------------------------------------------------|
| Α | Agree or repeat something that is correct | К | Tell someone you have heard them               |
| В | Check something and continue to check     | L | Follow an existing written procedure           |
| С | Cancel the approach                       | М | Change heading                                 |
| D | Inform or recommend                       | Ν | Cross a flight path                            |
| Ε | Change course to a new position           | 0 | Do not continue                                |
| F | Change or improve a setting               | Р | Don't do something previously arranged         |
| G | Inform when this is done                  | Q | Go somewhere else                              |
| Н | Decrease                                  | R | Make greater or higher                         |
| I | Don't do/don't include something          | S | Do something as quickly and safely as possible |
| J | Follow a line or flight path              | Т | Something should happen as discussed           |

#### **PHRASES:**

| Reduce  | Increase  | Make published | Advise    |
|---------|-----------|----------------|-----------|
| Hold    | Leave     | Acknowledge    | Monitor   |
| Confirm | Intercept | Cancel         | Expect    |
| Omit    | Divert    | Expedite       | Report    |
| Turn    | Track     | Adjust         | Go around |

## 5 READBACK REQUIREMENTS

Important instructions issued by the ATCO need to be repeated by the pilots so that it is made certain that the pilot has heard the message correctly as stated in AIC A 006/2017 [5]. The ATCO will acknowledge the correct read-back by transmitting the aircraft call sign and the phrase "CORRECT". In case a pilot reads back a clearance incorrectly, the controller shall transmit the phrase "NEGATIVE" followed by the call sign and the correct version of the clearance. The correct readback of the clearance shall be acknowledged by aircraft callsign and the phrase "CORRECT".

Examples of readback requirements:

| ATCO                                      | PILOT                               |
|-------------------------------------------|-------------------------------------|
|                                           | CTN123, ready for departure.        |
| CTN123, cleared for take-off RWY 15, wind |                                     |
| 140°/7kt.                                 |                                     |
|                                           | Cleared for take-off RWY 15, CTN123 |
| CTN123, correct.                          |                                     |
|                                           |                                     |
|                                           | CTN123, request descent.            |
| CTN123, descend to FL 150                 |                                     |
|                                           | Leaving FL 310, descending FL 160,  |
|                                           | CTN123                              |
| CTN123, negative, descend to FL 150.      |                                     |
|                                           | Leaving FL 310, descending FL 150,  |
|                                           | CTN123                              |
| CTN123, correct.                          |                                     |

#### Exercise 6: Readback requirements

The following instructions are to be read back, i.e. are to be transmitted by verbatim repetition using the same words and the same sequence and are to be concluded with the aircraft call sign.

ATS ROUTE CLEARANCES
 C: CTN663, cleared to Zagreb via flight planned route, FL 190, CRE 2D, squawk 7065.

C: AUA644, Zagreb Radar, identified, cleared to PIS, descend to 9 000 ft, QNH 1010, TL 95, expect ILS approach RWY 05.

- ALTIMETER SETTINGS
  C: 9ABPW, QNH 1003.
- LEVEL INSTRUCTIONS
  C: CTN320, descend to 3000ft

C: CTN320, after passing ZAG descend to FL 210.

SPEED INSTRUCTIONS
 C: CTN663, maintain present speed.

C: CTN663, increase speed to 220 kt.

HEADING INSTRUCTIONS
 C: 9ADDA, turn right heading 150.

C: CTN663, fly present heading.

- 6. ATIS CODE LETTERC: 9ADDA, check information C.
- SSR OPERATING INSTRUCTIONS/SSR CODES C: 9ACBE, squawk 6502.

C: CTN320, confirm squawk 5505.

- 8. SLOT TIME C: CTN622, slot time 0805.
- FREQUENCY CHANGES
  C: 9ADDA, contact Zagreb Tower 118,3.

C: 9ADDA, monitor Zagreb Radar on 135,8.

- 10. APPROACH CLEARANCES (EAT EXPECTED APPROACH TIME inclusive) C: CTN505, EAT 1010
- 11. TAXI INSTRUCTIONS C: 9AHGD taxi to holding point RWY 23.

12. TRANSITION LEVEL

C: CTN663, descend to 6000 ft, QNH 1013, transition level 70

- 13. CONDITION OF A CONDITIONAL CLEARNACES C: CTN663, after passing KOPRY, climb to FL 290.
- 14. RUNWAY DESIGNATOR CLEARANCES AND INSTRUCTIONS (INCLUDING THE CONDITION OF A CONDITIONAL CLEARANCE) TO:
- a) ENTER C: CTN662, cleared to enter RWY 31.
- b) LAND ONC: CTN662, cleared to land RWY 05, wind 050 degrees, 4 kt.
- c) TAKE OFF

C: CTN662, cleared for take-off, wind 230 degrees, 5 kt.

d) REJECT TAKE OFF

C: CTN662, stop immediately, CTN662, stop immediately, aircraft crossing the RWY.

C: CTN662, hold position, cancel, I say again, cancel take off clearance, vehicle on the RWY.

#### e) CROSS

C: CTN662, cleared to cross RWY 05.

#### f) BACKTRACK

C: CTN662, cleared to backtrack RWY 09.

- g) LINE UP C: CTN662, line up RWY 05.
- h) HOLD SHORT OF AN ACTIVE RUNWAYC: CTN662, hold short of RWY 05.

# 6 TEST PROCEDURES - RADIO CHECK AND READABILITY SCALE (ATMB 3.1.9.)

As explained in Manual on Radiotelephony [3] when radio checks are made , the following readability scale is to be used to indicate the quality of the transmission:

#### Table 9: Readability scale

| Quality                      | Scale |
|------------------------------|-------|
| Unreadable                   | 1     |
| Readable now and then        | 2     |
| Readable but with difficulty | 3     |
| Readable                     | 4     |
| Perfectly readable           | 5     |

Test transmissions should consist of the following items:

- 1. the identification of the aeronautical station being called
- 2. the aircraft identification
- 3. the words "RADIO CHECK"
- 4. the frequency being used

Replies to test transmissions contain the following items:

- 1. the identification of the station calling
- 2. the identification of the station replying
- 3. information regarding the readability of transmission

#### Example of radio check procedure:

|                                             | Zagreb Tower, 9ADAS, radio check 118,3 |
|---------------------------------------------|----------------------------------------|
|                                             | (box 1)                                |
| 9ADAS, Zagreb Tower, read you five          |                                        |
| 9ADAS, Zagreb Tower, read you three, with a |                                        |
| loud background whistle.                    |                                        |

NOTE. - The readability of a transmission should be classified by the number (Table 9), together with any other information regarding the transmission which may be useful to the station making the test.

#### Exercise 7: Radio check

| ZAGREB TOWER | SPLIT TOWER                                                                    | DUBROVNIK TOWER                                                                                                                                                                | ZAGREB TOWER                                                                                                                                                                                                                                                                                               |
|--------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTN692       | CTN622                                                                         | MAH492                                                                                                                                                                         | OAL523                                                                                                                                                                                                                                                                                                     |
| 118.275      | 124.725                                                                        | 120.005                                                                                                                                                                        | 121.225                                                                                                                                                                                                                                                                                                    |
| ZAGREB TOWER | ZAGREB TOWER                                                                   | ZAGREB TOWER                                                                                                                                                                   | ZAGREB TOWER                                                                                                                                                                                                                                                                                               |
| DLH392       | CTN125                                                                         | THY226                                                                                                                                                                         | MYT546                                                                                                                                                                                                                                                                                                     |
| 119.005      | 123.250                                                                        | 118.350                                                                                                                                                                        | 118.025                                                                                                                                                                                                                                                                                                    |
| PULA TOWER   | ZAGREB TOWER                                                                   | ZAGREB TOWER                                                                                                                                                                   | ZAGREB TOWER                                                                                                                                                                                                                                                                                               |
| BAW407       | SAS257                                                                         | JAL658                                                                                                                                                                         | TSO453                                                                                                                                                                                                                                                                                                     |
| 117.255      | 121.010                                                                        | 119.500                                                                                                                                                                        | 119.150                                                                                                                                                                                                                                                                                                    |
|              | CTN692<br>118.275<br>ZAGREB TOWER<br>DLH392<br>119.005<br>PULA TOWER<br>BAW407 | CTN692    CTN622      118.275    124.725      ZAGREB TOWER    ZAGREB TOWER      DLH392    CTN125      119.005    123.250      PULA TOWER    ZAGREB TOWER      BAW407    SAS257 | CTN692      CTN622      MAH492        118.275      124.725      120.005        ZAGREB TOWER      ZAGREB TOWER      ZAGREB TOWER        DLH392      CTN125      THY226        119.005      123.250      118.350        PULA TOWER      ZAGREB TOWER      ZAGREB TOWER        BAW407      SAS257      JAL658 |

Work in pairs. Produce examples of radio check using the following prompts.



Table 10: ATC units and their frequencies used for Radar Simulator exercises at the Department of aeronautics:

| UNIT                   | AREA                   | CALL SIGN           | FREQUENCY |
|------------------------|------------------------|---------------------|-----------|
| Banja Luka APP         | TMA Banja Luka         | Banja Luka Approach | 122.575   |
| Beograd ACC/North      | FIR/UIR Beograd/North  | Beograd Radar       | 133.450   |
| Beograd ACC/West       | FIR/UIR Beograd/West   | Beograd Radar       | 123.775   |
| Budapest ACC           | FIR/UIR Budapest       | Budapest Radar      | 133.200   |
| Graz APP               | TMA Graz               | Graz Radar          | 119.300   |
| Ljubljana ACC          | FIR/UIR Ljubljana      | Ljubljana Radar     | 135.275   |
| Maribor APP            | TMA Maribor            | Maribor Approach    | 119.200   |
| Vienna ACC             | FIR/UIR Vienna         | Vienna Radar        | 132.600   |
| Zagreb ACC             | FIR/UIR Zagreb         | Zagreb Radar        | 134.455   |
| Zagreb ACC/Adria       | FIR/UIR Zagreb/Adria   | Zagreb Radar        | 135.800   |
| Zagreb ACC/Lower North | FIR/Lower Zagreb/North | Zagreb Radar        | 129.650   |
| Zagreb TWR             | CTR Zagreb             | Zagreb Tower        | 118.300   |

## 7 Q CODES (ATMB 3.1.5.)

The Q code is a standardized collection of three-letter message encodings [7]. They all start with the letter "Q", which was initially developed for commercial radiotelegraph communication, and later adopted by other radio services, especially amateur radio. Although Q codes were created when Morse code was exclusively used for radio communication, they continued to be employed after the introduction of voice transmissions. The codes in the range QAA-QNZ are reserved for aeronautical use; QOA-QOZ for maritime use, and QRA-QUZ for all services.

Q codes were used extensively in aviation when much of the communication work (especially HF-long range) was done in Morse code. QNH was quicker to "key-in" than A.L.T.I.M.E.T.E.R. S.E.T.T.I.N.G S.E.A. L.E.V.E.L. P.R.E.S.S.U.R.E.

Today some Q-codes are still widely used in aviation because they are useful abbreviations. They are spoken in plain English, not phonetically.

| Q CODE | MEANING                                                                                      |
|--------|----------------------------------------------------------------------------------------------|
| QFE    | Atmospheric pressure at aerodrome elevation (or at RWY threshold)                            |
| QFU    | Magnetic orientation of runway                                                               |
| QGH    | Controlled descent through cloud                                                             |
| QNE    | Standard pressure (1013.25 hPa) baseline pressure setting equivalent to the ISA at sea level |
| QNH    | Altimeter sub-scale setting to obtain altitude above mean sea level (elevation               |
|        | when on the ground)                                                                          |

#### Table 11: Altimeter settings

#### Table 12: Direction finding

| Q CODE | MEANING                                                            |
|--------|--------------------------------------------------------------------|
| QDM    | Magnetic direction TO a facility/ Magnetic heading (with nil wind) |
| QDR    | Magnetic bearing (radial) FROM a facility                          |
| QTE    | True bearing FROM a facility (station)                             |
| QUJ    | True bearing TO a facility (station)                               |

## 8 METEOROLOGICAL INFORMATION (ATMB 4.2.4)

Meteorological information in the form of reports, forecasts or warnings is made available to pilots using aeronautical mobile service either by broadcast (e.g. VOLMET) or by means of specific transmissions from ground personnel to pilots. The phraseologies to be used by ATS personnel and other ground personnel in transmitting information on meteorological conditions, in particular from the content of local routine and special reports, are given in Chapter 12 of Doc 4444 [9]. Standard meteorological abbreviations and terms should be used and the information should be transmitted slowly and pronounced clearly in order that the recipient may record such data when necessary. The following forms should be used:

- WIND (number) DEGREES (number) (units)
- WIND AT (height/altitude/flight level) (number) DEGREES (number) (units)
- VISIBILITY (distance) [direction]
- PRESENT WEATHER (details)
- CLOUD (amount, [type] and height of base) (or SKY CLEAR)
- CAVOK
- TEMPERATURE [MINUS] (number) (and/or DEW POINT [MINUS] (number))
- QNH (or QFE) (number) [units]
- MODERATE (or TURBULENCE) [IN CLOUD] (area)
- REPORT FLIGHT CONDITIONS

#### Example of a meteorological information being transmitted:

| 9ADDA, Zadar present weather: wind        |                                    |
|-------------------------------------------|------------------------------------|
| 360 degrees, 5 knots, visibility over 10  |                                    |
| kilometres, few at 2500 feet, QNH 1008,   |                                    |
| time 1005                                 |                                    |
|                                           | QNH 1008, 9ADDA                    |
| 9ADDA, correct                            |                                    |
|                                           |                                    |
| CTN662, Zagreb: wind 360 degrees, 25      |                                    |
| knots, visibility 1000 metres, continuous |                                    |
| moderate rain, overcast 600 feet, QNH     |                                    |
| 1001                                      |                                    |
|                                           | QNH 1001, what is the temperature, |
|                                           | CTN662                             |
| CTN662, correct, temperature 7            |                                    |
|                                           | CTN662                             |

## 8.1 WAKE VORTEX SEPARATION

Wake turbulence is turbulence that forms behind an aircraft as it passes through the air. This turbulence includes various components, the most important of which are wingtip vortices and jetwash. Jetwash refers simply to the rapidly moving gasses expelled from a jet engine; it is extremely turbulent, but of short duration. Wingtip vortices, on the other hand, are much more stable and can remain in the air for up to two minutes after the passage of an aircraft. Wingtip vortices make up the primary and most dangerous component of wake turbulence. Wake turbulence is especially hazardous during the landing and take-off phases of flight, for three reasons. The first is that during take-off and landing, aircraft operate at low speeds and high angle of attack. This flight attitude maximizes the formation of dangerous wingtip vortices. Secondly, take-off and landing are the times when a plane is operating closest to its stall speed and to the ground i.e. there is little margin for recovery in the event of encountering another aircraft's wake turbulence. Thirdly, these phases of flight put aircraft closest together and along the same flight path, maximizing the chance of encountering the phenomenon.

ICAO Doc 4444 [9] mandates separation minima based upon wake vortex categories that are, in turn, based upon the Maximum Take Off Mass (MTOM) of the aircraft.

| ABBREVIATION | CATEGORY | МТОМ                                                   |
|--------------|----------|--------------------------------------------------------|
| L            | Light    | 7,000 kilograms or less                                |
| Μ            | Medium   | greater than 7,000 kilograms, but less than 136,000 kg |
| Н            | Heavy    | 136,000 kilograms or greater                           |
| J            | Super    | over 560 000 kg (A380-800)                             |

#### Table 13: MTOM minima are categorized as follows

#### 8.2 ESSENTIAL INFORMATION ON AERODROME CONDITIONS

Essential information on aerodrome conditions is information necessary to safety in the operation of aircraft, which refers to the movement area or any facilities usually associated with it as stated in ICAO Doc 4444 [9]. For example, construction work on a taxi strip not connected to the runway-in-use would not be essential information to any aircraft except one that might be taxiing in the vicinity of the construction work. If all traffic has to be confined to runways, that fact should be considered as essential aerodrome information to any aircraft not familiar with the aerodrome. Essential information on aerodrome conditions includes:

- 1. construction or maintenance work on or immediately adjacent to the movement area
- 2. rough or broken surfaces on a RWY, TWY or apron whether marked or not
- 3. snow, slush or ice on a RWY, TWY or apron
- 4. water on RWY, TWY or apron

- 5. snow banks or drifts adjacent to RWY, TWY or apron
- 6. other temporary hazards including parked A/C and birds on the ground or in the air
- 7. failure or irregular operation of a part or all of the aerodrome lighting system
- 8. any other pertinent information

## 8.3 RUNWAY SURFACE CONDITIONS

Procedures for the measurement and reporting of runway surface conditions are detailed in ICAO Annex 14 [10].

Reports from pilots may be re-transmitted by a controller when it is felt that the information may prove useful to other aircraft:

CTN 622, braking action medium reported

by A319 at 1025.

## 8.3.1 AMOUNT OF WATER ON THE RUNWAY

The runway conditions are very important for the aircraft landing and taking off from a certain airport. The controller shall inform the pilot of the amount of water on the runway whenever possible. The terminology used is the following:

#### Table 14: Amount of water on the runway

| TERM                                                                      | MEANING                                               |
|---------------------------------------------------------------------------|-------------------------------------------------------|
| DAMP                                                                      | the surface shows a change of colour due to moisture. |
| WET                                                                       | the surface is soaked but there is no standing water. |
| <b>WATER PATCHES</b> patches of standing water are visible on the runway. |                                                       |
| FLOODED                                                                   | extensive standing water is visible on the runway.    |

Whenever a controller deems it necessary, information that water is on a runway shall be passed to aircraft using the terms from the Table 14 according to the amount of water present.

Example of transmitting the runway conditions:

RWY (or TWY) WET [or DUMP, WATER PATCHES, FLOODED (depth), or SNOW REMOVED (length and width as applicable), RWY treated, or covered with patches of dry snow (or wet snow, or compacted snow, or slush; or frozen slush, or ice, or ice underneath, or ice and snow, or snowdrifts or frozen ruts and ridges)]

## 8.3.2 BRAKING ACTION

Braking action in aviation is a description of how easily an aircraft can stop after landing on a runway. Either pilots or airport management can report the braking action.

When reporting braking action, any of the following terms may be used: Good, Medium (it used to be known as Fair), Poor, Nil (bad or no braking action, not measured; in SNOTAM NIL refers to the deposits over total runway length i.e. clear and dry). Friction can be measured on each third of the runway by friction measuring device (from SNOTAM).

| MEASURED OR<br>CALCULATED COEFICIENT | ESTIMATED SURF | ACE FRICTION |
|--------------------------------------|----------------|--------------|
| 040 and above                        | Good           | 5            |
| 0.39 to 0.36                         | Medium/good    | 4            |
| 0.35 to 0.30                         | Medium         | 3            |
| 0.29 to 0.26                         | Medium/poor    | 2            |
| 0.25 and below                       | Poor           | 1            |
| 9 - unreliable                       | Unreliable     | 9            |

Table 15: Braking action

Other runway surface conditions which may be of concern to a pilot shall be transmitted at an appropriate time.

Example of runway surface conditions transmission:

| RWY REPORT AT (observation time), RWY       |  |  |
|---------------------------------------------|--|--|
| (number) (type of precipitant) UP TO (depth |  |  |
| of deposit) MILIMETRES. BRAKING ACTION      |  |  |
| GOOD (or MEDIUM TO GOOD, or MEDIUM,         |  |  |
| or MEDIUM TO POOR, or POOR, or              |  |  |
| UNRELIABLE) [and/or BRAKING COEFFICIENT     |  |  |
| (equipment and number)]                     |  |  |
|                                             |  |  |

| 9ADDA, Zadar Tower, grass mowing in progress near centre of aerodrome |                        |
|-----------------------------------------------------------------------|------------------------|
|                                                                       | 9ADDA, mowers in sight |
| CTN663, threshold RWY 27 displaced 500 feet due broken surface        |                        |
| CTN663, TWY G closed due maintenance.<br>Use A to vacate.             |                        |
| CTN662, braking action medium, heavy rain, time of measurement 0830   |                        |
|                                                                       | CTN662, roger          |

#### 8.4 WEATHER INFORMATION

Weather information should include the following information given in this order:

1) RUNWAY

- 4) TEMPERATURE
  5) DEW POINT
- 7) CLOUDS
- 8) PRECIPITATION
- 9) CORRECT TIME

WIND
 QNH

- 6) VISIBILITY
- 8.4.1 RUNWAY VISUAL RANGE

When transmitting the runway visual range the words "RUNWAY VISUAL RANGE" or the abbreviation RVR should be used followed by the runway number, the position for multiple readings, if necessary, and the RVR value(s): RUNWAY VISUAL RANGE (or RVR) [RUNWAY (number)] (distance).

When multiple RVR observations are available, they are always transmitted commencing with the reading for the touchdown zone, being followed by mid-point and far end (stop end).

CTN662, RVR RWY 23 touchdown 650 metres, mid-point 700 metres, stop end 600 metres

CTN662, roger

In the event that RVR information on any position is not available this information will be included in the appropriate sequence:

RVR [RWY (number)] (first position) (distance), (second position) MISSING, (third position) (distance).

## 8.4.2 SKY COVERING IN OKTAS

Sky covering refers to the amount of sky being covered by clouds. The sky is divided into eight parts or oktas and according to the number of oktas being covered by clouds, the following expressions are used:

| ABBREVIATION | MEANING   | OKTAS     |
|--------------|-----------|-----------|
| FEW          | Few       | 1/8 – 2/8 |
| SCT          | Scattered | 3/8 – 4/8 |
| BKN          | Broken    | 5/8 – 7/8 |
| OVC          | Overcast  | 8/8       |
| SKC          | Sky clear | 0/8       |

Other terms being used in connection to cloud cover are:

NSC – nil significant clouds

CAVOK – clouds/ceiling, visibility and weather O.K.

## 8.4.3 DEW POINT

Dew point is the air temperature at which a sample of air would reach 100% humidity based upon its current degree of saturation.

Once the relative humidity of a mass of air becomes 100%, then if the temperature falls it cannot hold all of the water vapour within it. The excess water vapour will then condense into cloud or fog or, if in contact with objects on or near the ground, will form dew or hoar frost.

When observing successive weather reports (METARs), a reducing gap between the actual temperature and the Dew Point temperature gives an indication of impending low visibility conditions and the possibility of fog.

|                                        | ZAGREB TOWER, CTN662, request      |
|----------------------------------------|------------------------------------|
|                                        | weather information                |
| CTN662, Zagreb Tower, departure RWY    |                                    |
| 05, wind 040 degrees, 5 knots, QNH     |                                    |
| 1016, temperature 6, dew point 5,      |                                    |
| visibility 6 km, BKN at 1500ft, OVC at |                                    |
| 4000ft, light rain, correct time 0611  |                                    |
|                                        | Departure RWY 05, QNH 1016, CTN662 |

## 8.5 VOLMET

VOLMET or voice weather broadcast represents meteorological aerodrome reports for certain aerodromes which are broadcast on specified frequencies. The call sign of the VOLMET, frequency, operating hours, aerodromes contained within the group, and contents are published in the AIP. All broadcasts are in English. (Zagreb VOLMET frequency 127,800 MHz.) The content of a VOLMET broadcast is as follows:

- 1. aerodrome identification
- 2. surface wind
- 3. visibility
- 4. RVR (if applicable)
- 5. weather
- 6. cloud
- 7. temperature
- 8. dew point
- 9. QNH
- 10. Trend (if applicable)

Non-essential words such as "surface wind", "visibility" etc. are not spoken.

"SNOCLO" is used to indicate that aerodrome is unusable for take-off/landings due to heavy snow on runway(s) or snow clearance.

## 8.6 SIGMET

SIGMET i.e. Significant Meteorological Information warning is a brief information on the occurrence of weather phenomena in FIR, which may have impact on aircraft operations (thunderstorms, severe turbulence, severe icing, mountain wave, heavy dust storm, heavy sand storm, volcanic ash cloud, volcanic eruption, radioactive cloud). This information is usually broadcast on the ATIS at ATC facilities, as well as over VOLMET stations.

## 8.7 METAR

METAR i.e. Meteorological Terminal Air Report is aerodrome routine meteorological report. It is a format for reporting weather information to pilots. A typical METAR contains data for the temperature, dew point, wind direction and speed, precipitation, cloud cover and heights, visibility, and pressure. It may also contain information on precipitation amounts, lightning, and other information such as a pilot report or PIREP and runway visual range (RVR). Sometimes, a TREND, which is a short period forecast, may be added to METAR.

## 8.8 AUTOMATIC TERMINAL INFORMATION SERVICE (ATIS)

To alleviate RTF loading at some busy airports, ATIS messages are broadcast to pass routine arrival/departure information on a discrete RTF frequency or on an appropriate VOR. It is a recorded message being played in a continuous loop. It is coded using the phonetic alphabet and with every change in ATIS message, the code (name) of the ATIS changes. Pilots inbound to the airports are normally required on first contact with the aerodrome ATSU to acknowledge receipt of current information by quoting the code letter of the broadcast. Pilots of outbound aircraft are not normally required to acknowledge receipt of departure ATIS except when requested on the actual ATIS broadcast.

Aerodromes possessing ATIS, the hours of ATIS operation and the frequency employed are published in the AIP.

ATIS broadcast will include the following:

- 1. Message identification i.e. "This is Zagreb Information Alpha".
- 2. Time of origin of weather report
- 3. Weather report
- 4. Runway(s) in use
- 5. Short term AIS information such as unserviceability of NAV AIDS, runway surfaces, etc.
- 6. Any other routine information useful to pilots operating at the aerodrome.

The QFE and RVR/RVRs are not included.

Rapidly changing meteorological situations sometimes make it impractical to include weather reports in the broadcast. In these circumstances, ATIS messages will indicate that weather information will be passed on RTF.

Any significant change to the content of a current ATIS message will be passed to pilots by RTF until such time as a new message is broadcast.

The highest cloud base that will be reported is 10,000 feet.

The recording is updated in fixed intervals or when there is a significant change in the information.
An example of ATIS broadcast:

"This is Zagreb Information Alpha, 0850 hours weather. Wind  $240^{\circ}$  12kt 10 km, intermittent slight rain, 3 octas 1000 ft, 8 octas 1800 ft, temperature +12, dew point +7, QNH 1011 hPa, landing RWY 23."

The pilot should report the received ATIS on first contact with the Tower, if not, ATC should provide the information:

Zadar Tower, 9AHGD, Information A received

CTN123, check information G

9AHGD, ATIS available on frequency 124,370, check information B

### **Exercise 8: Listening to ATIS:**

Listen to the following ATIS recordings from Robertson [11] and make notes for each one in the table below :

| AIRPORT           | INFO. | TIME | RWY | WIND | TEMP/<br>DP | TL | NAV AIDS | METEO INFO | OTHER |
|-------------------|-------|------|-----|------|-------------|----|----------|------------|-------|
| Schipol           |       |      |     |      |             |    |          |            |       |
| Rexbury           |       |      |     |      |             |    |          |            |       |
| Zurich            |       |      |     |      |             |    |          |            |       |
| Baden             |       |      |     |      |             |    |          |            |       |
| Mauignac          |       |      |     |      |             |    |          |            |       |
| Heathrow          |       |      |     |      |             |    |          |            |       |
| Brest<br>Guipavas |       |      |     |      |             |    |          |            |       |
| Eggenfelden       |       |      |     |      |             |    |          |            |       |
| Tallin            |       |      |     |      |             |    |          |            |       |
| Khabarovsk        |       |      |     |      |             |    |          |            |       |

### **Exercise 9: Prepositions**

Read the aircraft and ATC transmissions A to S below, and circle the correct choice of the provided prepositions under 1, 2, or 3 (RMIT [6]).

|   | INSTRUCTION                            | 1       | 2       | 3       | REST OF           |
|---|----------------------------------------|---------|---------|---------|-------------------|
|   |                                        |         |         |         | INSTRUCTION       |
| Α | Taxi                                   | to      | by      | with    | caution.          |
| В | Maintain profile speed                 | in      | between | on      | descent.          |
| С | Give way                               | to      | from    | by      | Qantas 767.       |
| D | Wind is 120 degrees                    | at      | by      | to      | 10 kn, gusting 20 |
|   |                                        |         |         |         | kn                |
| Е | Request intersection departure         | between | from    | by      | taxiway J.        |
| F | Pacific 328, descend                   | with    | at      | to      | 8000, QNH 1011.   |
| G | Traffic, a B737, is out                | at      | in      | to      | your left.        |
| н | The A320 is currently                  | by      | on      | in      | your 12 o'clock.  |
| I | Hold short                             | from    | of      | to      | runway 09         |
| J | Ibisair 810, cancel speed restrictions | to      | on      | in      | climb.            |
| К | Taxi                                   | by      | between | to      | holding point A.  |
| L | We're experiencing some moderate       | in      | on      | between | FL 250 and 230.   |
|   | turbulence                             |         |         |         |                   |
| М | Give way to traffic                    | by      | on      | in      | your left.        |
| Ν | Qantas 10 will be passing FL 270       | on      | with    | at      | time 45           |
| 0 | Pacific 16, reduce speed               | at      | to      | on      | 210 kn for        |
|   |                                        |         |         |         | sequencing.       |
| Ρ | Qantas 10, reduce speed                | by      | at      | from    | 50 kn.            |
| Q | Skystar 333, climb to be at FL 350     | in      | from    | by      | 35.               |
| R | Croatia 981, expedite descent          | until   | to      | at      | passing FL 200.   |
| S | Thai 446, there's a 737 approaching    | at      | to      | from    | your left.        |

# 9 ORDER OF INSTRUCTIONS IN AERODROME CONTROL ENVIRONMENT

### VFR DEPARTURES

- 1. INITIAL CALL + TAXI (DEPARTURE) INSTRUCTIONS
- 2. ATC CLEARANCE
- 3. TAKE OFF CLEARANCE
- 4. AIRBORNE AND/OR POSITION REPORT
- 5. FREQUENCY CHANGE

### **VFR ARRIVALS**

- 1. INITIAL CALL + POSITION REPORT
- 2. JOINING INSTRUCTIONS
- 3. JOINING TRAFFIC CIRCUIT
- 4. LANDING CLEARANCE (LOW PASS/LOW APPROACH/ TOUCH AND GO CLR.)
- 5. INSTRUCTION TO VACATE THE RUNWAY (OR INSTRUCTION WHAT TO DO AFTER LOW PASS/LOW APPROACH/ TOUCH AND GO)

### IFR DEPARTURES

- 1. INITIAL CALL + DEPARTURE INFORMATION
- 2. START UP CLEARANCE
- 3. TAXI INSTRUCTIONS
- 4. ATC CLEARANCE
- 5. TAKE OFF CLEARANCE
- 6. AIRBORNE
- 7. FREQUENCY CHANGE

#### **IFR ARRIVALS**

- 1. INITIAL CALL + POSITION REPORT
- 2. REPORT OUTER MARKER
- 3. LANDING CLEARANCE
- 4. INSTRUCTION TO VACATE THE RUNWAY





Picture 1 shows at which positions in the aerodrome traffic circuit communication is to be initiated or conducted between the pilot and air traffic controller according to the ICAO Doc 4444 [9].

- Position 1 Aircraft initiates call and requests taxi instructions
- Position 2 Holding position is the last position where the aircraft is to be given ATC clearance. Take off clearance can be given here as well if there is no conflicting traffic
- Position 3 Aircraft is given take off clearance if it was not practicable at position 2
- Position 4 Aircraft is issued clearance to land.
- Position 5 Aircraft is given clearance to taxi to the apron.
- Position 6 aircraft is provided with parking information.

### 9.1 DEPARTURE INFORMATION (ATMB 4.1.1.1.)

At the airports with no ATIS, departing aircraft may ask for departure information upon first contact with the tower air traffic controller. There is a difference between departure information being given to the IFR and to the VFR traffic.

The following elements of departure information are given to the IFR flights:

| PILOT                                 | AIR TRAFFIC CONTROLLER                    |
|---------------------------------------|-------------------------------------------|
|                                       | CS, CS, (IFR/VFR TO <u>DESTINATION</u> ), |
|                                       | REQUEST DEPARTURE INFORMATION             |
| CS, CS, DEPARTURE RUNWAY, WIND,       |                                           |
| QNH, TEMPERATURE, DEW POINT, RVR,     |                                           |
| (VISIBILITY), DEPARTURE SLOT, CORRECT |                                           |
| ТІМЕ                                  |                                           |

Example of departure information given by Zagreb Tower to an IFR flight

|                                          | Zagreb Tower, CTN662, IFR to Split,    |
|------------------------------------------|----------------------------------------|
|                                          | request departure information          |
|                                          | request departure information          |
| CTN662, Zagreb Tower, departure RWY      |                                        |
| 05, wind 040 degrees 5 knots, QNH 1018,  |                                        |
| temperature 6, dew point 5, visibility 6 |                                        |
| km, departure SLOT 0705, correct time    |                                        |
| 0611.                                    |                                        |
|                                          | Departure RWY 05, QNH 1018, SLOT 0705, |
|                                          | CTN662                                 |
| CTN662, CORRECT                          |                                        |

Example of departure information given by Zagreb Tower to a VFR flight

|                                       | Zagreb Tower, 9AHGD, request departure |
|---------------------------------------|----------------------------------------|
|                                       | information                            |
| 9AHGD, Zagreb Tower, (good morning),  |                                        |
| departure RWY 23, wind 220º/16kt, QNH |                                        |
| 1005, temperature 21, dew point 9,    |                                        |
| (correct) time 1015                   |                                        |
|                                       | RWY23, QNH 1005, 9AHGD                 |
| 9AHGD, correct                        |                                        |

#### Example of departure information given by Zadar Tower

|                                       | Zadar Tower, 9AHGD, request departure |
|---------------------------------------|---------------------------------------|
|                                       | information                           |
| 9AHGD, Zadar Tower, departure RWY 32, |                                       |
| wind 300º/16kt, QNH 1001, temperature |                                       |
| 2, dew point 3, RVR 800m, time 0715   |                                       |
|                                       | RWY 32, QNH 1001, 9AHGD               |
| 9AHGD, correct                        |                                       |

#### Example of departure information given by Pula Tower

|                                      | Pula Tower, 9AZVJ, request departure |
|--------------------------------------|--------------------------------------|
|                                      | information                          |
| 9AZVJ, Pula Tower, departure RWY 09, |                                      |
| wind 060º/10kt, QNH 999, temp. 25/4, |                                      |
| correct time 1645.                   |                                      |
|                                      | RWY09, QNH 999, 9AZVJ                |
| 9AZVJ, correct                       |                                      |

### **Exercises 10: Departure information**

Work in pairs. Using the given data produce the pilot-controller communication on departure information.

|   | AERODROME | RUNWAY | WIND   | QNH  | TEMP/DP | TIME |
|---|-----------|--------|--------|------|---------|------|
| Α | LDPL      | 09     | 090/8  | 1018 | 15/4    | 1010 |
| В | LDZA      | 23     | 280/15 | 998  | 24/3    | 1600 |
| С | LDSP      | 23     | 310/10 | 1010 | 15/2    | 0911 |
| D | LDSB      | 04     | 100/20 | 1014 | 18/3    | 0926 |
| E | LDZD      | 22     | 210/06 | 1009 | 17/7    | 1802 |
| F | LDRI      | 14     | 120/09 | 1000 | 09/1    | 2215 |
| G | LDOS      | 29     | 300/08 | 1004 | 22/06   | 1532 |
| н | LDDU      | 12     | 100/07 | 1013 | 33/5    | 1246 |
| 1 | LDLO      | 02     | 050/09 | 1005 | 30/6    | 0847 |
| J | LDZL      | 28L    | 300/06 | 1016 | 15/10   | 1319 |
| К | LDZD      | 14     | 100/09 | 999  | 32/2    | 0709 |
| L | LDZD      | 32     | 280/12 | 1023 | 28/01   | 0945 |

### 9.2 ENGINE STARTING PROCEDURES (ATMB 4.2.1)

Engine starting procedures, also known as start-up clearance, are procedures when a pilot asks the controller for the permission to start the engines. It is being done to save fuel in case there are delays at the aerodrome and the aircraft is not allowed to depart immediately. In case the pilot has not requested departure information before start-up, departure runway and QNH are to be given to the pilot together with the start-up clearance.

If the pilot has received departure information just before start-up request, QNH does not have to be given to the pilot together with the start-up clearance unless it has changed in the meantime.

1. Permission for start-up is given upon the pilot's request. If the QNH and departure runway are not given, there is no readback:

| AIR TRAFFIC CONTROLLER                 | PILOT                                 |
|----------------------------------------|---------------------------------------|
|                                        | 9AHGD, request start up.              |
| 9AHGD, start-up approved, departure    |                                       |
| RWY 05, QNH 1012, report ready to taxi |                                       |
|                                        | Starting up, RWY 05, QNH 1012, wilco, |
|                                        | 9AHGD                                 |
| 9AHGD, correct                         |                                       |

2. The example when the start-up cannot be approved due various reasons:

|                                            | 9AHGD, request start up |
|--------------------------------------------|-------------------------|
| 9AHGD, unable to approve start up          |                         |
| aircraft taxiing behind you.               |                         |
| 9AHGD, negative start up, aircraft taxiing |                         |
| behind you                                 |                         |
|                                            | 9AHGD, roger            |

3. If not contacted by the ATC before, the pilot is supposed to ask for start up again:

|                                        | 9AHGD, request start up |
|----------------------------------------|-------------------------|
| 9AHGD, expect start up at 02, QNH 1012 |                         |
|                                        | Roger, QNH 1012, 9AHGD  |
| 9AHGD, correct                         |                         |

4. The pilot will start up at a given time:

9AHGD, request start up

9AHGD, start up at 20, QNH 1012

To start up at 20, QNH 1012, 9AHGD

9AHGD, correct

5. Pilot decides when to start the engines after being given the expected time of departure.

|                                         | 9AHGD, request start up |
|-----------------------------------------|-------------------------|
| 9AHGD, expect departure at 20, start up |                         |
| at own discretion                       |                         |
|                                         | 9AHGD, roger            |

6. Pilot decides when to start the engines after being given the SLOT time.

|                                        | 9AHGD, request start up |
|----------------------------------------|-------------------------|
| 9AHGD, earliest time of departure      |                         |
| according to SLOT at 1002, start up at |                         |
| own discretion                         |                         |
|                                        | SLOT 1002, roger, 9AHGD |
| 9AHGD, correct                         |                         |

#### Exercises 11: Start up clearance

Work in pairs. Using the given data, produce start up clearances:

|    | A/C CALL SIGN | QNH  | DEP. SLOT | EXPECTED S/U | START UP TIME |
|----|---------------|------|-----------|--------------|---------------|
| 1  | BAW678        | 1008 | 1055      |              |               |
| 2  | MAH417        | 1003 |           | 0654         |               |
| 3  | CTN471        | 1022 |           |              | 1016          |
| 4  | AZA542        | 1014 |           | 1516         |               |
| 5  | AUA677        | 1016 | 2036      |              |               |
| 6  | ADR3S         | 998  |           |              |               |
| 7  | DLH2CJ        | 1000 |           |              | 2140          |
| 8  | PGT632        | 1001 |           | 0821         |               |
| 9  | CES851        | 1002 |           |              | 2306          |
| 10 | EZS889        | 1005 | 0807      |              |               |
| 11 | AFR1545       | 1000 | 0956      |              |               |
| 12 | MPH7736       | 1010 |           | 1030         |               |

### 9.3 PUSH-BACK/POWER-BACK PROCEDURES (ATMB 4.2.1)

When an aircraft is parked nose-in to the terminal building, it has to be pushed backwards by tugs or by its own power before taxiing for departure (power-back). The authorisation to do so, will be obtained from the Tower or Ground controller.

| т. | Example when pushback is approved         |                                             |
|----|-------------------------------------------|---------------------------------------------|
|    |                                           | BAW234, request push back from stand 13     |
|    | BAW234, pushback approved RWY 30          |                                             |
|    |                                           | RWY 30, BAW234                              |
|    | BAW234, correct                           |                                             |
| 2. | Example when pushback is approved         |                                             |
|    |                                           | CTN234, stand 23, request start up and push |
|    |                                           | back                                        |
|    | CTN234, start up and push back            |                                             |
|    | approved                                  |                                             |
|    |                                           | CTN234, roger                               |
| 3. | Example when pushback is not approved     |                                             |
|    |                                           | PGT254, stand 23, request push back         |
|    | PGT254, stand by,                         |                                             |
|    | PGT254, expect 2-minute delay, B737       |                                             |
|    | taxing behind you                         |                                             |
|    |                                           | PGT254, roger                               |
| 4. | Example when pushback is not approved     |                                             |
|    |                                           | CTN132, request push back                   |
|    | CTN132, negative, hold position, aircraft |                                             |
|    | taxing behind you                         |                                             |
|    |                                           | CTN132, roger                               |
| 5. | Example of power back                     |                                             |
|    |                                           | 9ABAV, request power back                   |
|    | 9ABAV, power back at own discretion       |                                             |
|    | RWY 05                                    |                                             |
|    |                                           | Roger, RWY 05, 9ABAV                        |
|    | 9ABAV, correct                            |                                             |

1. Example when pushback is approved

### Ground crew – pilot communication

This exchange of communication is followed by a visual signal to the pilot to indicate that disconnection is completed and all is clear for taxiing.

| GROUND CREW                                | PILOT                               |
|--------------------------------------------|-------------------------------------|
|                                            | Ground-cockpit, ready for push back |
| Cockpit-ground, confirm brakes released    |                                     |
|                                            | Brakes released                     |
| Confirm brakes set                         |                                     |
|                                            | Brakes set                          |
| Commencing push back                       |                                     |
| Push back completed                        |                                     |
|                                            | Stop push back                      |
|                                            | Disconnect                          |
| Disconnecting, stand by for visual at your |                                     |
| right/left                                 |                                     |

### Towing procedures: Ground - vehicle

| ATCO (Ground)                           | VEHICLE                                   |
|-----------------------------------------|-------------------------------------------|
|                                         | Ground, tug 9, request tow Croatia Airbus |
|                                         | 319 from maintenance hangar to stand 12   |
| Tug 9, tow approved via Taxiway F to    |                                           |
| stand 12                                |                                           |
|                                         | Apron, Tug 9, request tow DLH B737 from   |
|                                         | gate 20 to gate 14                        |
| Tug 9, proceed via A, hold short of RWY |                                           |
| 15                                      |                                           |
|                                         | Tug 9, to proceed via A, to hold short of |
|                                         | RWY 15                                    |
| Tug 9, hold position                    |                                           |
|                                         | Tug 9, holding                            |
| Tug 9, stand by                         |                                           |

### 9.4 ATC CLEARANCE (ATMB 4.1.1.)

ATC clearance is a term often used for ATS route or en-route clearances. It is also used for ATC route clearance given to a pilot before departure (either during taxiing or at the holding point) which confirms the filed flight plan. The pilot should not enter the runway without having received and read back ATC route clearance. ATC clearance consists of the information about destination, route, departure procedure, level and transponder code of the departing aircraft. There are slight differences between IFR and VFR ATC clearances.

# 9.4.1 IFR ATC CLEARANCE

IFR ATC clearance is given to IFR flights and should consist of the following parts: Call sign, CLEARED TO <u>destination</u> VIA FLIGHT PLANNED ROUTE, LEVEL, SID, SQUAWK.

An example of ATC clearance to an IFR flight to Split

| CTN662, are you ready to copy ATC          |                                               |
|--------------------------------------------|-----------------------------------------------|
| clearance?                                 |                                               |
|                                            | CTN662, ready/affirm                          |
| CTN662 cleared to Split via flight planned |                                               |
| route, FL 130, SID MABAN 2R, squawk        |                                               |
| 7034                                       |                                               |
|                                            | Cleared to Split via flight planned route, FL |
|                                            | 130, SID MABAN 2R, squawk 7034, CTN662        |
| CTN662. correct                            |                                               |

An example of ATC clearance to an IFR flight to Pula

| CTN662, cleared to Pula via flight         |                                            |
|--------------------------------------------|--------------------------------------------|
| planned route, FL130, (when airborne)      |                                            |
| climb straight ahead until passing 3000ft, |                                            |
| then turn left cleared to GOLUN, CRE,      |                                            |
| squawk 7015                                |                                            |
|                                            | Cleared to Pula, via flight planned route, |
|                                            | FL130, to climb straight ahead and after   |
|                                            | passing 3000ft to turn left to GOLUN, CRE  |
|                                            | next, squawk 7015, CTN662.                 |
| CTN662, correct                            |                                            |

#### Exercise 12: ATC clearance

Using the information provided in flight strips produce the ATC clearances for the following IFR flights:

1.

| IFR | AT72/M | 6521   |      | FL160   |  |
|-----|--------|--------|------|---------|--|
|     |        | AZA545 |      | MABAN2C |  |
|     | 250    |        | LIMC |         |  |

C:\_\_\_\_\_

2.

| Ζ.  |        |        |      |         |  |
|-----|--------|--------|------|---------|--|
| IFR | A320/M | 7073   |      | FL130   |  |
|     |        | AUA646 |      | TEBLI2C |  |
|     | 460    | 1125   | LDDU |         |  |

C:\_\_\_\_\_

| 3.  |        |        |      |         |  |
|-----|--------|--------|------|---------|--|
| IFR | A320/M | 6521   |      | FL140   |  |
|     | 450    | DLH510 |      | NEDEL2C |  |
|     | 450    |        | EDDF |         |  |

C:\_\_\_\_\_

4.

| ч.  |        |        |      |          |  |
|-----|--------|--------|------|----------|--|
| IFR | AT43/M | 7126   |      | FL130    |  |
|     | 160    | CTN623 |      | GOLUN 2R |  |
|     | 245    |        | LDPL |          |  |

C:\_\_\_\_\_

5

| 5.  |        |        |      |         |  |
|-----|--------|--------|------|---------|--|
| IFR | A319/M | 6506   |      | FL140   |  |
|     | 350    | GWI450 |      | NEDEL2C |  |
|     | 460    |        | EHAM |         |  |

C:\_\_\_\_\_

| 6.  |        |        |      |         |  |  |  |
|-----|--------|--------|------|---------|--|--|--|
| IFR | A319/M | 6342   |      | FL140   |  |  |  |
|     | 350    | BAW485 |      | RASIN2C |  |  |  |
|     | 460    |        | LHBP |         |  |  |  |

C:\_\_\_\_\_

### Example of a request for visual departure

|                                         | CTN123, Request visual departure direct to SK  |
|-----------------------------------------|------------------------------------------------|
|                                         | CTN123, Request visual departure until passing |
|                                         | 8000ft                                         |
| CTN662, advise if able to accept visual |                                                |
| departure direct to (point)             |                                                |
| CTN662, advise if able to accept visual |                                                |
| departure until passing 7000ft          |                                                |
|                                         | CTN662, able to accept visual departure, RWY   |
|                                         | 23                                             |

#### Example of a clearance for visual departure

|                                           | CTN662, request visual departure             |
|-------------------------------------------|----------------------------------------------|
| CTN662, cleared for visual departure      |                                              |
| RWY 05, (when airborne) turn              |                                              |
| left/right/direct to (heading/significant |                                              |
| point), maintain visual reference until   |                                              |
| (altitude).                               |                                              |
|                                           | Cleared for visual departure RWY 05, (when   |
|                                           | airborne) turn left/right/direct to          |
|                                           | (heading/significant point), maintain visual |
|                                           | reference until (altitude). CTN662           |
| CTN662, correct                           |                                              |

# 9.4.2 VFR ATC CLEARANCE

### VFR ATC clearance is given to VFR flights and should consist of the following parts CS, CLEARED VFR FLIGHT TO <u>clearance limit/point/FIR boundary, etc.</u>, LEVEL, WHEN AIRBORNE TURN LEFT/RIGHT, PROCEED TO (instructions), SQUAWK

#### An example of ATC clearance to an VFR flight to Lučko

|                                          | 9ADDA, VFR flight to Lučko, ready to copy ATC |
|------------------------------------------|-----------------------------------------------|
|                                          | clearance                                     |
| 9ADDA, cleared VFR flight to Lučko, at   |                                               |
| 1500ft, when airborne turn left, proceed |                                               |
| to Lučko, squawk 0015                    |                                               |
|                                          | Cleared VFR flight to Lučko, at 1500ft, when  |
|                                          | airborne to turn left, to proceed to Lučko, , |
|                                          | squawk 0015, 9ADDA                            |
| 9ADDA, correct                           |                                               |

#### An example of ATC clearance to an VFR flight to Sinj

| 9ADDA, VFR flight to Sinj, ready to copy ATC    |
|-------------------------------------------------|
| clearance                                       |
|                                                 |
|                                                 |
|                                                 |
| Cleared VFR flight to Sinj, 3000ft, when        |
| airborne to turn right, to proceed to S1 point, |
| squawk 0017, 9ADDA                              |
|                                                 |
|                                                 |

#### An example of ATC clearance to an VFR training flight at LDZA

|                                          | 9ADKH, for VFR zone Toplana training flight,  |
|------------------------------------------|-----------------------------------------------|
|                                          | ready to copy ATC clearance                   |
| 9ADKH, cleared VFR training flight, when |                                               |
| airborne turn left, proceed to Toplana,  |                                               |
| altitude 2500ft, squawk 0016             |                                               |
|                                          | Cleared VFR training flight, when airborne to |
|                                          | turn left, to proceed to Toplana, altitude    |
|                                          | 2500ft, squawk 0016, 9ADKH                    |
|                                          |                                               |

9ADKH, correct

An example of ATC clearance to an VFR flight to flying in the traffic circuit

|                                           | 9ADKH, for aerodrome traffic circuit training    |
|-------------------------------------------|--------------------------------------------------|
|                                           | flight, ready to copy ATC clearance              |
| 9ADKH, cleared left-hand traffic circuit  |                                                  |
| RWY 05 training flight, altitude 1500 ft, |                                                  |
| when airborne turn left, join left-hand   |                                                  |
| downwind RWY 05, squawk 0012              |                                                  |
|                                           | Cleared left-hand traffic circuit RWY 05         |
|                                           | training flight, altitude 1500 ft, when airborne |
|                                           | to turn left to join left-hand downwind RWY      |
|                                           | 05, squawk 0012, 9ADKH                           |
| 9ADKH, correct                            |                                                  |

\_\_\_\_\_

#### Exercise 13: ATC clearance

Using the information provided in flight strips produce the ATC clearances for the following VFR flights:

1.

| VFR | PA18/L | 0005  |      | 1500' |  |
|-----|--------|-------|------|-------|--|
|     |        | 9ADPA |      | TGL   |  |
|     | 110    | LDZA  | LDZA |       |  |

C:\_\_\_\_\_

| 2.  |                 |       |      |       |  |  |  |  |
|-----|-----------------|-------|------|-------|--|--|--|--|
| VFR | VFR C210/L 0015 |       |      | 2500' |  |  |  |  |
|     |                 | 9ACHD |      | S1    |  |  |  |  |
|     | 120             |       | LDSS |       |  |  |  |  |

C:\_\_\_\_\_

| 3.  |          |       |      |       |  |  |  |  |
|-----|----------|-------|------|-------|--|--|--|--|
| VFI | R C172/L | 0010  |      | 3000' |  |  |  |  |
|     |          | 9ADEG |      | N1    |  |  |  |  |
|     | 100      |       | LDVA |       |  |  |  |  |

| ( | C:  |        |       |      |       |  |
|---|-----|--------|-------|------|-------|--|
| _ | 1.  |        |       |      |       |  |
|   | VFR | PA18/L | 0015  |      | 2500' |  |
|   |     |        | 9ADRB |      | S1    |  |
|   |     |        |       | LDSB |       |  |

C:\_\_\_\_\_

5.

. VFR C172/L 0023 4000' 9ADFC E2 100 LDZA LDOS

I. Francetić: Radiotelephony Communications 1 Handbook

C:\_\_\_\_\_

6.

| 0.  |        |       |      |       |  |  |  |
|-----|--------|-------|------|-------|--|--|--|
| VFR | C172/L | 0017  |      | 3000' |  |  |  |
|     |        | 9ADEG |      | W1    |  |  |  |
|     | 100    |       | LDRG |       |  |  |  |

C:\_\_\_\_\_

### 9.5 TAXI PROCEDURES (ATMB 4.1.1.2)

Taxi instructions undergo read-back which means that they should be repeated exactly as received since it can greatly reduce the number of runway incursions especially at larger airports with a vast network of taxiways and runways.

Example of taxi instructions to an IFR flight

|                                           | CTN662, request taxi (instructions),       |
|-------------------------------------------|--------------------------------------------|
|                                           | information C received.                    |
| CTN662, taxi via taxiway Alpha to holding |                                            |
| point RWY 05.                             |                                            |
|                                           | To taxi via taxiway Alpha to holding point |
|                                           | RWY 05, CTN662.                            |
| CTN662, correct                           |                                            |

To VFR flights, taxi instructions are often given together with a shortened version of departure information (consisting of runway in use, wind and QNH).

Example of taxi instructions to a VFR flight to Lučko

|                                       | Zagreb Tower, 9ADDA, general aviation       |
|---------------------------------------|---------------------------------------------|
|                                       | apron, VFR flight to Lučko, request taxi.   |
| 9ADDA, Zagreb Tower, taxi to holding  |                                             |
| point RWY05 via taxiway Bravo, wind   |                                             |
| 040º/5kt, QNH 1018, correct time 0611 |                                             |
|                                       | To taxi to holding point RWY 05 via taxiway |
|                                       | Bravo, QNH 1018, 9ADDA                      |
| 9ADDA, correct                        |                                             |

Example of taxi instructions to a VFR flight to enter the RWY at intersection C

| 9ACDH, taxi via TWY B, C to holding point |                                               |
|-------------------------------------------|-----------------------------------------------|
| RWY 05, wind 070º/10kt, QNH 1009          |                                               |
|                                           | To taxi via TWY B, C to holding point RWY 05, |
|                                           | QNH 1009, 9ACDH                               |
| 9ACDH, correct                            |                                               |

#### Example of taxi instructions to a VFR flight to at LDZA for RWY 23

|                                     | 9AHGD, starting up, request taxi instructions |
|-------------------------------------|-----------------------------------------------|
| 9AHGD taxi to holding point RWY 23, |                                               |
| wind 220º/16kt                      |                                               |
|                                     | To taxi to holding point RWY 23, 9AHGD        |
| 9AHGD, correct                      |                                               |

The pilot may request to depart from the intersection and not the runway threshold

|                                         | CTN622, request departure from RWY 05,        |
|-----------------------------------------|-----------------------------------------------|
|                                         | intersection B                                |
| CTN622, approved, taxi to holding point |                                               |
| RWY 05, intersection B                  |                                               |
|                                         | To taxi to holding point RWY 05, intersection |
|                                         | B CTN622                                      |
|                                         |                                               |

CTN622, negative, taxi to holding point RWY 05, intersection A Roger, to taxi to holding point RWY 05, intersection A, CTN622.

#### Example of requesting the aircraft to hold position

|                                        | 9AUWX, request taxi clearance                                |
|----------------------------------------|--------------------------------------------------------------|
| 9AUWX, taxi via TWY A to holding point |                                                              |
| RWY 23, report approaching TWY B       |                                                              |
|                                        | To taxi via TWY A to holding point RWY 23,<br>wilco, 9A UWX. |
| 9AUWX, correct.                        |                                                              |
|                                        | 9AUWX, approaching TWY B.                                    |
| 9AUWX, hold position.                  |                                                              |
|                                        | Holding (position), 9A UWX.                                  |
| 9AUWX, correct.                        |                                                              |
|                                        |                                                              |

9AUWX, roger, continue taxiing

9AUWX, approaching TWY B

9AUWX, roger

#### 9ABAV, request TWY B

| 9ABAV, TWY B approved, taxi via TWY B |                                            |
|---------------------------------------|--------------------------------------------|
| to holding point B, RWY 23            |                                            |
|                                       | To taxi via TWY B to holding point RWY 23, |
|                                       | 9ABAV                                      |
| 9ABAV, correct                        |                                            |

Instruction to the pilot not to enter a specified taxiway or runway.

9ADDC, hold short of TWY B

Holding short of TWY B, 9ADDC

9ADDC, correct

Instruction to the pilot to allow a certain aircraft to overtake it.

| 9A BAV, give way to Airbus 319 passing |                                    |
|----------------------------------------|------------------------------------|
| ahead of you                           |                                    |
|                                        | 9ABAV, giving way to Airbus 319.   |
| 9ABAV, roger                           |                                    |
|                                        |                                    |
|                                        | 9ABAV, traffic/Airbus 319 in sight |
| 9ABAV, roger                           |                                    |

An example of after landing instructions to vacate the runway. It is often requested that the pilot reports when s/he has left the runway thus letting the controller know that the runway is clear for other traffic to land or take off.

|                                        | CTN662, request taxi instructions       |
|----------------------------------------|-----------------------------------------|
| CTN662, vacate the runway via taxiway  |                                         |
| Delta, taxi via taxiway Foxtrot to the |                                         |
| apron, report runway vacated           |                                         |
|                                        | Via TWY Delta and Foxtrot to the apron, |
|                                        | wilco, CTN662                           |
| CTN662, correct                        |                                         |
|                                        | CTN662, runway vacated                  |
| CTN662, roger                          |                                         |

Expediting clearing the runway

CTN662, expedite vacating the runway via taxiway Delta, traffic on final RWY 05, report runway vacated

|                | Expediting vacating via TWY Delta, wilco, |
|----------------|-------------------------------------------|
|                | CTN662                                    |
| CTN662 correct |                                           |

Examples of backtracking or backtaxiing instructions

| CTN662, backtrack RWY 05, expedite       |                                          |
|------------------------------------------|------------------------------------------|
| vacating the runway via taxiway Charlie, |                                          |
| traffic on final RWY 05, report runway   |                                          |
| vacated                                  |                                          |
|                                          | To backtrack RWY 05 and to expedite      |
|                                          | vacating the runway via taxiway Charlie, |
|                                          | wilco, CTN662                            |
| CTN662 correct                           |                                          |
|                                          | CTN662, runway vacated                   |
| CTN662, roger                            |                                          |

|                                   | CTN123, request backtrack RWY 11 |
|-----------------------------------|----------------------------------|
| CTN123, backtrack RWY 11 approved |                                  |
|                                   | Backtracking RWY 11, CTN123      |
| CTN123, correct                   |                                  |

|                          | CTN 123, request backtrack RWY 11 |
|--------------------------|-----------------------------------|
| CTN123, backtrack RWY 11 |                                   |
|                          | To backtrack RWY 11, CTN123       |
| CTN123, correct          |                                   |

### Examples of various taxi instructions

CTN123, expedite taxi (reason) Expediting, CTN123. CTN123, caution taxi slower (reason) Slowing down, CTN123. CTN123, vacate runway via taxiway A Vacating runway via taxiway A, CTN123 CTN123, give way to Dash 80 entering TWY C.

CTN123, Giving way Dash 80 entering TWY C

CTN123, Taxi/turn right at the far end.

CTN123, Take/turn first/second left/right

CTN123, Taxi carefully/ with caution

CTN123, Follow (description of other aircraft or vehicle)

CTN123, Taxi into holding bay

### 9.6 LINE UP (ATMB 4.1.1.3.)

Line-up is an instruction given to an aircraft to enter the runway, align with the runway centreline, do all the necessary checks and wait for take-off clearance. Line-up clearance can be given when the aircraft is at the holding point or while it is still taxiing towards the holding point. The purpose of line-up instruction is to expedite the flow of traffic.

|                                        | 9ADDC, at holding point RWY 23 ready for |
|----------------------------------------|------------------------------------------|
|                                        | departure                                |
| 9ADDC, line up (and wait) RWY 05.      |                                          |
|                                        |                                          |
|                                        | Lining up RWY 05, 9ADDC.                 |
| 9ADDC, correct                         |                                          |
| 57 (2 2 6) 6011666                     |                                          |
|                                        |                                          |
|                                        | 9ADDC, approaching holding point RWY 05  |
| (9ADDC, are you ready for immediate    |                                          |
|                                        |                                          |
| departure)                             |                                          |
|                                        | 9ADDC, ready (or affirm).                |
|                                        | SADDC, ready (or anning.                 |
| 9ADDC, line up RWY 05 and be ready for |                                          |
| immediate departure                    |                                          |
| ininieulate ueparture                  |                                          |

Lining up RWY 05, 9ADDC

9ADDC, correct

### 9.6.1 MULTIPLE LINE UPS ON THE SAME RUNWAY

When multiple runway/intersection departures are given, runway number is to be uttered. Lineup instructions may be issued to more than one aircraft at different points on the same runway, taking into account that the intersection take-off criteria shall be complied with and conditions of application fulfilled according to local operating instructions.

9ADDC, line up RWY 23

Lining up RWY 23, 9ADDC

9ADDC, correct

9ADDC, line up and wait RWY 23, intersection C

Lining up RWY 23, intersection C, 9ADDC

9ADDC, correct

### 9.6.2 CONDITIONAL LINE-UP CLEARANCE

Conditional clearance affecting the active runways may be given only when the arriving aircraft is seen both by the controller and the pilot of the departing aircraft and after the departing aircraft has correctly identified the arriving aircraft on which the conditional clearance is based. So, before uttering the conditional line-up clearance, a controller shall provide the pilot of a departing aircraft with traffic information (aircraft type and position).

| CTN662, traffic is Airbus 319 on final RWY |                                              |
|--------------------------------------------|----------------------------------------------|
| 05. Report traffic in sight.               |                                              |
|                                            | CTN662, traffic in sight.                    |
| CTN662, roger, behind Airbus 319 line up   |                                              |
| behind                                     |                                              |
|                                            | Behind Airbus 319 to line up behind, CTN662. |
| CTN662, correct                            |                                              |
| AFTER THE AIRCRAFT HAS                     | S VACATED THE RUNWAY                         |
| CTN662, cleared for take-off RWY 05, wind  |                                              |
| 060º/5kt                                   |                                              |
|                                            | Cleared for take-off RWY 05, CTN662.         |
| CTN662, correct                            |                                              |

### 9.7 TAKE OFF CLEARANCE (ATMB 4.1.1.3)

An aircraft is not allowed do take off without the take-off clearance. Take off clearance can be given to the aircraft during taxiing, at the holding point or on the line up position. It should be followed by the information on wind direction and velocity. When visibility is good, the controller will also give the aircraft airborne time.

| 9ADDC, cleared for take-off RWY 23, |                                    |
|-------------------------------------|------------------------------------|
| wind 220º/14kt                      |                                    |
|                                     | Cleared for take-off RWY 23, 9ADDC |
| 9ADDC, correct.                     |                                    |
| 9ADDC, airborne at 23               |                                    |

In poor visibility (applicable for Low Visibility operations) the controller will ask the pilot to report airborne time.

| 9ADDC, cleared for take-off RWY23, wind |                                          |
|-----------------------------------------|------------------------------------------|
| 220º/14kt, report airborne              |                                          |
|                                         | Cleared for take-off RWY 23, wilco 9ADDC |
| 9ADDC, correct.                         |                                          |
|                                         | 9ADDC, airborne at 23                    |
| 9ADDC, roger                            |                                          |

There are situations when the pilot has been given the take-off clearance and has entered the runway in use but has not commenced the take off. Then, the controller is to determine the pilot's intentions:

| 9ADDC, cleared for take-off RWY 05,   |
|---------------------------------------|
| wind 190º/20kt                        |
| Cleared for take-off RWY 05, 9ADDC    |
| 9ADDC, correct                        |
| THE AIRCRAFT IS NOT MOVING            |
| 9ADDC, take off immediately or vacate |
| the RWY                               |
| Taking off RWY 05, 9ADDC              |
| 9ADDC, roger                          |
|                                       |
| 9ADDC, cleared for take-off, wind     |
| 190º/20kt                             |
| Cleared for take-off RWY 05, 9ADDC    |
| 9ADDC, correct                        |

| THE AIRCRAFT IS NOT MOVING              |                                           |
|-----------------------------------------|-------------------------------------------|
| 9ADDC, take off immediately or vacate   |                                           |
| the RWY                                 |                                           |
|                                         | Vacating the RWY, 9ADDC                   |
| 9ADDC, roger                            |                                           |
|                                         |                                           |
| CTN662, expedite departure,             |                                           |
| approaching traffic on 4-mile-final RWY |                                           |
| 05                                      |                                           |
|                                         | Taking off RWY 05, CTN662                 |
| CTN662, roger                           |                                           |
|                                         |                                           |
| CTN662, take off immediately or vacate  |                                           |
| the RWY via taxiway Bravo               |                                           |
|                                         | Vacating the runway via taxiway B, CTN662 |

CTN662, roger

In situations when the pilot has been given the take-off clearance, but is still at the holding point and is not entering the runway in use to commence the take-off, the controller is to determine the pilot's intentions:

|                                      | CTN662, holding point RWY 23, ready for |
|--------------------------------------|-----------------------------------------|
|                                      | departure                               |
| CTN662, cleared for take-off RWY 23, |                                         |
| wind 210º/12kt.                      |                                         |
| THE AIRCRA                           | FT IS NOT MOVING                        |
| CTN662, take off immediately or hold |                                         |
| short of RWY23.                      |                                         |
|                                      | Holding short RWY 23, CTN662.           |
| CTN662, correct                      |                                         |
|                                      |                                         |
|                                      | CTN662, holding point RWY 23, ready for |
|                                      | departure.                              |
| CTN662, cleared for take-off RWY 23, |                                         |
| wind 210º/12kt.                      |                                         |

Cleared for take-off RWY 23, CTN622

CTN622, correct

CTN662, take off immediately or hold short of RWY.

Taking off RWY 23, CTN662.

CTN662, roger

9ADDC, hold short of RWY 23.

Holding short RWY 23, 9ADDC.

9ADDC, roger

### 9.7.1 CANCELLATION OF TAKE-OFF CLEARANCE AT THE HOLDING POINT

The take-off clearance can be cancelled on the line up position or on the runway holding point. In situations when the pilot has been given the take-off clearance but has not yet started the takeoff roll and there is some obstacle on the runway, the controller will attempt to stop the pilot/aircraft from taking off:

| CTN662, hold position, cancel take off, I |                          |
|-------------------------------------------|--------------------------|
| say again, cancel take off clearance,     |                          |
| vehicle on the runway                     |                          |
|                                           | Holding position, CTN662 |
| CTN662 correct.                           |                          |

### 9.7.2 REJECTING THE TAKE OFF CLEARANCE DURING THE TAKE OFF RUN

In situations when the pilot has been given the take-off clearance and has started the take-off roll and there is some obstacle on the runway, the controller will attempt to stop the pilot/aircraft from taking off:

| CTN662, stop immediately, CTN662, stop |  |
|----------------------------------------|--|
| immediately.                           |  |

Stopping, CTN662

CTN662, correct.

### 9.8 **REPORTING AIRBORNE**

In case the visibility is good the controller will provide the pilot with the airborne time. If the visibility is low, the controller will ask the pilot to report airborne time.

| 9ADDC, report airborne.               |                       |
|---------------------------------------|-----------------------|
|                                       | 9ADDC, wilco          |
|                                       | 9ADDC, airborne at 25 |
| 9ADDC, roger, contact Zagreb Radar on |                       |
| 120,7                                 |                       |
|                                       | 120,7, 9ADDC          |
| 9ADDC, correct.                       |                       |

| 9ADDC, cleared for take-off, wind      |                                    |
|----------------------------------------|------------------------------------|
| 220º/13kt, report airborne             |                                    |
|                                        | Cleared for take-off, wilco, 9ADDC |
| 9ADDC, correct                         |                                    |
|                                        | 9ADDC, airborne at 27.             |
| 9ADDC, roger.                          |                                    |
| 9ADDC, report leaving the control zone |                                    |
|                                        | 9ADDC, wilco                       |
|                                        | 9ADDC, leaving the control zone.   |
| 9ADDC, roger, contact Zagreb Radar on  |                                    |
| 118,5                                  |                                    |
|                                        | 118,5, 9ADDC                       |

#### Exercise 14: Runway clearances

Unjumble the sentences and write your sentences in the space provided and connect the sentences with the pictures:

- 1. Immediate/Coastal 44/be ready/line up/
- 2. Wind 340°, 3 kts/cleared/RWY 36/for/ Qantas 524/take-off
- 3. and/wait/line/Pacific 19/up/RWY 36
- 4. will/Qantas61/737/ RWY 36/cleared/on crossing runway/for/take-off/landing/hold short
- 5. 311/hold/Ibisair/position
- 6. Advise/available/required/Qantas 10/if/backtrack
- 7. Acknowledge/immediately/Jetstar 418/stop/immediately/I say again/stop
- 8. Short final/Qantas 86/behind/line up/RWY 36/behind/on/the Qantas 767
- 9. Eastern101/information/for/near TWY Golf/birds/your/north/of RWY 36/there are

# 9.9 AERODROME CONTROL - TRAFFIC INFORMATION (ATMB 4.1.1.4.)

Traffic information shall be passed in order to arrange sequencing, to avoid unnecessary delay and to manage safety issues evaluating time most efficiently.

It shall consist of:

- 1. the call sign of the aircraft being addressed,
- 2. the aircraft type,
- 3. the aircraft position (according to the last pilot's report and ATC clearance)
- 4. the aircraft level (when known).

The pilot can provide the following answers to acknowledge the receipt of the traffic information:

9ADDA, looking out. 9ADDA, traffic in sight. 9ADDA, negative contact.

9ADDA, clear of traffic.





### **Exercise 15: Traffic information**

Look at Picture 2 and draw the following aircraft positions on the map according to the traffic information given:

- 1. 9ADML, traffic is Piper 28 from Lučko to N3 point at 2000 ft. (Report traffic in sight)
- 9ADKL, traffic is C150 just departing (from) RWY 05, proceeding to N1 point, climbing to 2000 ft (Report traffic in sight)
- 3. 9ADLP, traffic is Cessna 172 just airborne and joining left-hand traffic circuit RWY 05
- 4. 9ADMS, traffic is Cessna 150 just performing touch-and-go RWY05 and about to join lefthand traffic circuit RWY 05
- 5. 9ADDK, traffic is C150 on right-hand downwind RWY 05 at 2000 ft

# 9.10 GO AROUND (ATMB 4.1.1.5.)

A go-around is an aborted landing of an aircraft which is on final approach. If for some reason the pilot decides not to land, the pilot can simply fly back up to the traffic circuit altitude, and complete another circuit i.e., go around again. The term go-around is still used even for modern airliners, though they may not use traditional circuit patterns for landing. The manoeuvre is also known as a "Balked Landing". The go-around procedure may be initiated either by the air traffic controller or by the pilot in command of the aircraft. The controller may instruct the pilot to go around if there is an aircraft, vehicle or object on the runway (runway incursion) or some other unsafe condition. In both controlled and uncontrolled fields, the pilot in command may decide to go around at any time, for example if the aircraft is not lined up or configured properly for a safe landing; an aircraft, vehicle or other object has not cleared the runway; no landing clearance was received (in a controlled field); the landing gear is not properly extended; a dangerous meteorological condition is experienced on final approach (e.g., poor visibility, excessive crosswinds, etc.); excessive energy (too high or too fast); or some other unsafe condition is detected. IFR flights refer to "executing the missed approach" rather than a (VFR) go around.

Example of a go-around initiated by the controller to VFR flight

| 9ADDB, go around, (not below 1000 ft), traffic on |                                   |
|---------------------------------------------------|-----------------------------------|
| the RWY, report left-hand downwind RWY 05         |                                   |
|                                                   | Going around, (not below 1000 ft) |
|                                                   | wilco, 9ADDB                      |
| 9ADDB, correct                                    |                                   |

Example of a go-around initiated by the controller to an IFR flight

| CTN622, go around and follow missed approach procedure. |                               |
|---------------------------------------------------------|-------------------------------|
|                                                         |                               |
|                                                         | Going around to follow missed |
|                                                         | approach procedure, CTN622.   |
| CTN622, correct, contact Zagreb Radar 120,7             |                               |
|                                                         | 120,7, CTN622                 |
| CTN622, correct                                         |                               |

The pilot himself saw something on the runway or due to some other reason has decided to go around:

|                                          | 9ABBC, going around |
|------------------------------------------|---------------------|
| 9ABBC, roger, report right-hand downwind |                     |
| RWY 14.                                  |                     |
|                                          | 9ABBC, wilco        |

### 9.11 LOW APPROACH (ATMB 4.1.1.5.)

Low approach is an approach along or parallel to a runway descending to a specified minimum level. It is some sort of a training manoeuvre when aircraft are flying along or parallel to a runway with its gear retracted intentionally. Law approach clearance should be accompanied with the clearance instructing the pilot what to do after low approach. That clearance may be given before or after the low approach clearance.

Low approach clearance shall consist of the following elements:

- 1. runway in use
- 2. wind
- 3. "not below altitude"
- 4. QNH

An example of a low approach clearance given to a VFR flight.

| 9ADDA, request low approach RWY 09 (for |
|-----------------------------------------|
| training)                               |
|                                         |
|                                         |
|                                         |
| Cleared low approach RWY 09, not below  |
| 1000 feet, QNH 1009, 9ADDA              |
|                                         |

| 9ADDA, correct, after low approach, turn  |                                              |
|-------------------------------------------|----------------------------------------------|
| right, proceed to E2 point, climb to 3000 |                                              |
| ft, (squawk 1001)                         |                                              |
|                                           | After low approach to turn right, to proceed |
|                                           | to E2 point, to climb to 3000 ft, (squawk    |
|                                           | 1001), 9ADDA                                 |
| 9ADDA, correct                            |                                              |
|                                           | 9ADDA, low approach completed.               |
| 9ADDA, roger, report passing 2000ft       |                                              |
|                                           | 9ADDA, wilco.                                |

### 9.12 LOW PASS (ATMB 4.1.1.5.)

In case of unsafe gear indication (nose, main, left or right landing gear), the pilot may request to fly past the control tower or some other observation point for the purpose of visual inspection from the ground. Low pass is to be executed not below a certain level depending on the altitude of the observation point. Law pass clearance should be accompanied with the clearance instructing the pilot what to do after low pass as is the case with low approach. Reasons given for executing low pass may be unsafe indication of the landing gear.

Low pass clearance shall consist of the following elements:

- 1. runway in use
- 2. wind
- 3. "not below altitude"
- 4. QNH

An example of a low pass clearance given to a VFR flight.

|                                            | 9ADAS, request low pass due unsafe         |
|--------------------------------------------|--------------------------------------------|
|                                            | indication of the nose wheel               |
| 9ADAS, cleared for low pass RWY 23,        |                                            |
| wind 220º/12kt not below 500 feet, QNH     |                                            |
| 1010.                                      |                                            |
|                                            | Cleared for low pass RWY 23, not below 500 |
|                                            | ft, QNH 1010, 9ADAS.                       |
| 9ADAS, correct, after low pass turn right, |                                            |
| join right-hand downwind RWY 23.           |                                            |

After low pass to turn right, to join right-hand downwind RWY 23, 9ADAS.

9ADAS, correct

When passing the tower, the controller can provide the pilot with the information on the state of landing gear. Since the controller cannot guarantee that what he sees is 100% true, s/he is to use phrases like "seems to, doesn't seem to, appears to, doesn't appear to" when describing the state of the landing gear:

CTN423, landing gear appears up CTN423, nose gear appears down CTN423, nose gear seems jammed CTN423, landing gear doesn't appear up CTN423, landing gear doesn't seem down

### 9.13 TOUCH-AND-GO and STOP-AND-GO (ATMB 4.1.1.5.)

Touch-and-go is a manoeuvre in which an aircraft touches the ground as in landing and immediately takes off again. It is common when learning to fly a fixed-wing aircraft. It involves landing on a runway and taking off again without coming to a full stop. Usually the pilot then circles the airport in a traffic circuit and repeats the manoeuvre. This allows many landings to be practiced in a short time. If the pilot brings the aircraft to a full stop before taking off again, then it is known as "stop-and-go".

Touch-and-go landings are also crucial when a plane lands at a point on the runway where there is not enough space to come to a complete stop, but has enough space to accelerate and take off again to carry out a go-around. So, when a pilot wishes to land and take off again immediately for training purposes, thus reducing the time spent on the ground, s/he will ask for touch-and-go.

Example of a touch-and-go clearance

|                                     | 9ADKH, on final RWY 05, for touch-and-go<br>(training) |
|-------------------------------------|--------------------------------------------------------|
| 9ADKH, cleared for touch-and-go RWY |                                                        |
| 05, wind 060º/5kt                   |                                                        |
|                                     | Cleared for touch-and-go RWY 05, 9ADKH                 |
| 9ADKH, correct                      |                                                        |

As is the case with low approach and low pass clearances, touch-and-go clearance should also be accompanied with the instruction to the pilot what to do afterwards for the simple reason that the aircraft cannot stay still in the air. There are two versions:

Example of a longer version of "after touch-and-go" instruction

9ADKH, correct, after touch-and-go turn right, join right-hand traffic circuit RWY 05, report downwind. After touch-

After touch-and-go to turn right to join righthand traffic circuit RWY 05, wilco, 9ADKH

9ADKH, correct

Example of a shorter version of "after touch-and-go" instruction

| 9ADKH, after touch-and-go turn right, |                                                  |
|---------------------------------------|--------------------------------------------------|
| join right-hand downwind RWY 05       |                                                  |
|                                       | After touch-and-go to turn right, to join right- |
|                                       | hand downwind RWY 05, 9ADKH.                     |
| 9ADKH, correct                        |                                                  |

# 9.14 FULL STOP LANDING (ATMB 4.1.1.6.)

After a number of touch-and-gos the pilot may ask for a full stop landing or in case the traffic situation does not permit another execution of touch-and-go, the controller shall issue the instruction for the full stop landing. The information that the pilot should make a full stop landing should be accompanied with the clearance to land because "make full stop landing" is not a clearance but just a piece of information that no more touch-and-goes are available.

Example of full stop landing being given after a series of touch-and-gos

|                                         | 9ADDA, request another touch-and-go for |
|-----------------------------------------|-----------------------------------------|
|                                         | training.                               |
| 9ADDA, unable to approve touch-and-go,  |                                         |
| make full stop landing, cleared to land |                                         |
| RWY 05, wind 050º/4kt                   |                                         |
| 9ADDA, correct                          |                                         |

Example of full stop landing being given after a series of touch-and-gos

9ADDA, negative (due (to) traffic), make full stop landing, cleared to land RWY 05, wind 050º/4kt.

RWY 05, cleared to land for full stop RWY05, 9ADDA.

9ADDA, correct

### 9.15 DELAYING ACTIONS

For the purpose of maintaining the safe and orderly flow of traffic in the traffic circuit, the controller shall sometimes use delaying actions to separate traffic. The pilot can be asked to orbit at a certain position, to make one orbit or one 360 or to extend downwind.

### 9.15.1 MAKING 360/AN ORBIT

When making an orbit the aircraft will lose 2 minutes. The controller needs to specify whether the orbit should be made to the left or to the right and which will depend on the position in the traffic circuit. It is preferable to make orbits away from the runway in use. Upon the completion, the pilot shall inform the controller that the orbit has been completed.

| 9ADDA, make a three sixty right, (report |                                        |
|------------------------------------------|----------------------------------------|
| three sixty completed).                  |                                        |
|                                          | One three sixty right, (wilco), 9ADDA. |
| 9ADDA, correct.                          |                                        |
|                                          | 9ADDA, orbit completed.                |
| 9ADDA, roger, continue approach, report  |                                        |
| final.                                   |                                        |
|                                          | 9ADDA, roger, wilco.                   |

# 9.15.2 ORBITING

The controller can ask the pilot to orbit at a certain position, which means that the aircraft will be orbiting (doing orbits, each lasting two minutes) until the controller asks the pilot to stop.

Example of orbiting in downwind position

| 9ADDA, orbit right at position left-hand |                                        |
|------------------------------------------|----------------------------------------|
| downwind RWY 05.                         |                                        |
|                                          | To orbit right at L-H downwind RWY 05, |
|                                          | 9ADDA.                                 |
| 9ADDA, stop orbiting, continue approach, |                                        |
| report final RWY 05.                     |                                        |
|                                          | Stopping, to continue approach, wilco, |
|                                          | 9ADDA.                                 |
| 9ADDA correct.                           |                                        |

9ADDA, orbit left at present position.

Orbiting left at present position, 9ADDA.

9ADDA, correct.

Example of orbiting over a point

| 9ADDA, you are number 2 for landing, orbit |                                              |
|--------------------------------------------|----------------------------------------------|
| over S point.                              |                                              |
|                                            | Number 3 for landing, to orbit over S point, |
|                                            | 9ADDA.                                       |
| 9ADDA, correct.                            |                                              |

Example of orbiting over a point

| 9ADDA, hold over S2 until 25. |                                  |
|-------------------------------|----------------------------------|
|                               | To hold over S2 until 25, 9ADDA. |
| 9ADDA, correct.               |                                  |
# 9.15.3 EXTENDING DOWNWIND

The pilot can be asked to extend downwind which means that the downwind section of the traffic circuit will be prolonged and the aircraft will turn base later than usual, thus making the final leg of the traffic circuit longer as well. The controller shall ask the pilot to turn base when the adequate separation has been established.

| 9ADDA extend left-hand downwind RWY<br>05, (call you back for turning to base/final) |                                                     |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                                      | Extending left-hand downwind RWY 05, (roger), 9ADDA |
| 9ADDA, correct (expect onward                                                        |                                                     |
| instructions shortly)                                                                |                                                     |

# 9.16 FLYING IN THE TRAFFIC CIRCUIT/PATTERN/ZONE (ATMB 4.1.1.4.)

Controlled airspace is an airspace of defined dimensions within which air traffic control service is provided to IFR flights and to VFR flights in accordance with the airspace classification.

Airway is a control area or portion thereof established in the form of a corridor equipped with radio navigational aids. (5 NM wide from the central line to each side).

Control zone (CTR) is a controlled airspace extending upwards from the surface of the earth to a specified upper limit.

Terminal control area (TMA) is a control area normally established at the confluence of ATS routes in the vicinity of one or more major aerodromes.

At uncontrolled airports and in CTR Croatian is spoken to VFR flights, and in all other situation English is spoken, i.e. English phraseology.

Example of a VFR flight entering the control zone and joining instructions for RWY 05

|                                            | Zagreb Tower, 9ADDA, S1 point, 2000 ft,   |
|--------------------------------------------|-------------------------------------------|
|                                            | request joining instructions for landing. |
| 9ADDA, Zagreb Tower, roger, proceed to S2  |                                           |
| point, 2000ft, RWY 05, wind 120º/12kt, QNH |                                           |
| 997                                        |                                           |
|                                            | To proceed to S2 point, 2000ft, RWY 05,   |
|                                            | QNH 997, 9ADDA                            |

| 9ADDA, correct                            |                                         |
|-------------------------------------------|-----------------------------------------|
|                                           | 9ADDA, S2 point, 2000ft                 |
| 9ADDA, roger, join right-hand pattern RWY |                                         |
| 05, 1500ft, report downwind               |                                         |
|                                           | To join right-hand pattern for RWY 05,  |
|                                           | 1500ft, wilco, 9ADDA.                   |
| 9ADDA, correct                            |                                         |
|                                           | 9ADDA, right-hand downwind (for) RWY 05 |
| 9ADDA, roger, number 1.                   |                                         |
|                                           |                                         |

| Example of joining instructions for RWY23 |                                         |
|-------------------------------------------|-----------------------------------------|
| 9ADDA, join left-hand downwind RWY 23,    |                                         |
| wind 190º/14kt, QNH 1013.                 |                                         |
|                                           | To join left-hand downwind, RWY 23, QNH |
|                                           | 1010, 9ADDA                             |
| 9ADDA, negative, QNH 1013.                |                                         |
|                                           | QNH 1013, 9ADDA.                        |
| 9ADDA, correct.                           |                                         |
|                                           | 9ADDA, downwind RWY 23                  |
| 9ADDA, roger, report turning base         |                                         |
|                                           | 9ADDA, wilco.                           |
|                                           | 9ADDA, turning base                     |
| 9ADDA, roger, report turning final        |                                         |
|                                           | 9ADDA, wilco                            |
|                                           | 9ADDA, turning final                    |

### Exercise 16: VFR TRAFFIC CIRCUIT

Produce initial calls and joining instruction for the following aircraft:

1.

| т.  |        |       |      |               |  |
|-----|--------|-------|------|---------------|--|
| VFR | PA18/L | 0005  |      | LDZL 1500'    |  |
|     |        | 9ADP  | A    | 1 TGL AT LDZA |  |
|     |        |       |      | 3000' S1      |  |
|     | 110    | LDZL  | LDSS |               |  |
| 2.  | 1      | 1     |      |               |  |
| VFR | C210/L | 0009  |      | 2500'         |  |
|     |        | 9ADEC | ì    | S1            |  |
|     | 120    | LDZA  | LDSS |               |  |
| 3.  |        |       |      |               |  |
| VFR | C172/L | 0006  |      | 2500'         |  |
|     |        | 9ADH  | V    | N1            |  |
|     | 100    | LDZA  | LDVA |               |  |
| 4.  |        |       |      | · · · ·       |  |
| VFR | C172/L | 0001  |      | 1500          |  |
|     |        | 9ADDA | 4    | TGL           |  |
|     |        | LDZA  | LDZA |               |  |
| 5.  |        |       |      |               |  |
| VFR | C150/L |       |      | 2000'         |  |
|     |        | 9ADAE | 3    | W1            |  |
|     |        | LDRG  | LDZA |               |  |
| 6.  |        |       |      |               |  |
| VFR | C210/L | 0005  |      | 3000'         |  |
| 1   | 1      |       |      |               |  |

| VFR | C210/L | 0005      |  | 3000' |  |
|-----|--------|-----------|--|-------|--|
|     |        | 9AREG     |  | E2    |  |
|     |        | LDZA LDOS |  |       |  |

7.

| VFR | 0015  |      | 2500' N1    |  |
|-----|-------|------|-------------|--|
|     | 9ACDH |      | L/A at LDZA |  |
|     | LDVA  | LDVA |             |  |

### Exercise 17: IFR FLIGHTS

Produce complete exchange of messages (initial call, departure information, ATC clearance, take off clearance or joining instructions for the following flights:

| 1 |   |   |  |
|---|---|---|--|
| 4 | - | • |  |

| IFR | F70/M | 6543   |  | FL140   |  |
|-----|-------|--------|--|---------|--|
|     | 280   | AUA333 |  | MACEL2C |  |
|     | 380   | LOWW   |  |         |  |

2.

| <b>_</b> . |        |        |      |         |  |
|------------|--------|--------|------|---------|--|
| IFR        | A320/M | 7073   |      | FL130   |  |
|            |        | SWR646 |      | PODET2C |  |
|            | 460    | LDZA   | LSZH |         |  |
|            | 460    | LDZA   | LSZH |         |  |

3.

| IFR | A320/M | 6535   |      | FL140   |  |
|-----|--------|--------|------|---------|--|
|     | 450    | BAW450 |      | PODET2C |  |
|     | 450    | LDZA   | EGLL |         |  |
| 4   |        |        |      |         |  |

4.

| IFR | AT43/M | 7076   |      | FL130   |  |
|-----|--------|--------|------|---------|--|
|     | 160    | CTN369 |      | RUDIK2C |  |
|     | 245    | LDZA   | LDSP |         |  |

5.

| I | FR | A319/M |       |      | ETO/PIS |  |
|---|----|--------|-------|------|---------|--|
|   |    |        | AFR69 | 8    | 1512    |  |
|   |    | 460    | LFPG  | LDZA |         |  |

6.

| IFR | A319/M | LDZA  |      | ETO/PIS |  |
|-----|--------|-------|------|---------|--|
|     |        | AZA12 | 23   | 1530    |  |
|     | 465    | LIRF  | LDZA |         |  |

7.

| IFR | AT72/M | 6521  |      | FL160   |  |
|-----|--------|-------|------|---------|--|
|     |        | AZA54 | 5    | MABAN2C |  |
|     | 250    | LDZA  | LIMC |         |  |

Here is a combination of joining instructions and traffic information to traffic No. 2 regarding traffic No. 1:

There is an aircraft (A320) on final RWY 05, which is supposed to land first, and there is another aircraft (9ADKH) in the traffic circuit, which is supposed to follow number 1 and land after it.

|                                                                 | Zagreb TOWER, 9ADKH departed from             |
|-----------------------------------------------------------------|-----------------------------------------------|
|                                                                 | Lučko, maintaining 1500 ft, for low approach  |
|                                                                 | at Zagreb (request joining instructions).     |
| 9ADKH, Zagreb Tower, RWY in use 05, wind                        |                                               |
| 060/5kt, QNH 1018, join left-hand traffic                       |                                               |
| circuit RWY 05, at 1500 ft, report                              |                                               |
| downwind.                                                       |                                               |
|                                                                 | RWY 05, QNH 1018, to join left-hand traffic   |
|                                                                 | circuit RWY 05, at 1500 ft, wilco, 9ADKH.     |
| 9ADKH, correct.                                                 |                                               |
|                                                                 |                                               |
|                                                                 | 9ADKH left-hand downwind RWY 05, 1500ft.      |
| 9ADKH, traffic/number one is A320 just                          |                                               |
| passing OM RWY 05, report traffic in sight.                     |                                               |
|                                                                 | 9ADKH, traffic in sight.                      |
| 9ADKH, roger, number two, follow A320,                          |                                               |
| report on final, caution wake turbulence.                       |                                               |
|                                                                 | Number two, wilco, roger, 9ADKH.              |
| 9ADKH, correct.                                                 |                                               |
|                                                                 |                                               |
|                                                                 | 9ADKH, on final RWY 05.                       |
| 9ADKH, cleared low approach RWY 05,                             |                                               |
| wind 065º/7kt, not below 1000 ft, QNH                           |                                               |
| 1018                                                            | Cleared low energesch DM/V OF rest helew      |
|                                                                 | Cleared low approach RWY 05, not below        |
| ADKH correct after low approach turn                            | 1000 ft, QNH 1018, 9ADKH                      |
| 9ADKH, correct, after low approach, turn                        |                                               |
| left proceed to Lučko, climb to 1500ft,<br>report over N3 point |                                               |
|                                                                 | After low approach to turn left to proceed to |
|                                                                 | Lučko, to climb to 1500 ft, wilco, 9ADKH      |
| 9ADKH correct                                                   |                                               |
|                                                                 |                                               |

# 9.17 JOINING INSTRUCTIONS, FINAL APPROACH AND LANDING (ATMB 4.1.1.5.)

Example of arriving IFR traffic instructions

|                                       | Zagreb Tower, CTN662, ILS established RWY |
|---------------------------------------|-------------------------------------------|
|                                       | 05.                                       |
| CTN662, Zagreb Tower, cleared to land |                                           |
| RWY05, wind 060/7kt.                  |                                           |
|                                       | Cleared to land RWY05, CTN662.            |
| CTN662, correct.                      |                                           |

Phraseology to be used on final to an IFR flight making visual approach

|                                      | CTN423, (on) final.             |
|--------------------------------------|---------------------------------|
| CTN423, roger, do you have RWY in    |                                 |
| sight?                               |                                 |
|                                      | CTN423, affirm.                 |
| CTN423, cleared to land RWY 23, wind |                                 |
| 190º/17k.t                           |                                 |
|                                      | Cleared to land RWY 23, CTN423. |
| CTN423, correct                      |                                 |

Phraseology to be used on final to an arriving VFR flight

|                                   | Zagreb Tower, 9ADDA, 7NM NE of the field |
|-----------------------------------|------------------------------------------|
|                                   | at 1500ft, for landing.                  |
| 9ADDA, Zagreb Tower, cleared for  |                                          |
| straight in approach RWY 23, wind |                                          |
| 220º/5, QNH 1009                  |                                          |
|                                   | Cleared for straight in approach RWY 23, |
|                                   | QNH 1009, 9ADDA                          |

In case the RWY is occupied and/or landing clearance will not be issued during the first contact, the pilot on an instrument approach shall be instructed as follows:

|                                         | Zagreb Tower, CTN662, ILS established RWY |
|-----------------------------------------|-------------------------------------------|
|                                         | 05                                        |
| CTN662, Zagreb Tower, (roger), continue |                                           |
| approach, report passing outer marker   |                                           |
|                                         | Continuing approach, wilco, CTN662        |
|                                         | CTN662, passing outer marker              |

| CTN662 cleared to land, wind 060º/7kt |                                       |
|---------------------------------------|---------------------------------------|
|                                       | Cleared to land, CTN662               |
| CTN662 correct                        |                                       |
|                                       |                                       |
|                                       | Zagreb Tower, CTN662, ILS established |
| CTN662, Zagreb Tower, continue        |                                       |
| approach, report passing outer marker |                                       |
|                                       | Continuing approach, wilco, CTN662    |
|                                       | CTN662, passing outer marker          |
| CTN662, continue approach, expect     |                                       |
| landing clearance shortly, (landed)   |                                       |
| aircraft still on the RWY             |                                       |
|                                       | Continuing approach, roger, CTN662    |
| CTN662 cleared to land, wind 060/7kt  |                                       |
|                                       | Cleared to land, CTN662               |
| CTN662 correct                        |                                       |

In case the RWY is occupied and landing clearance cannot be issued, the pilot on a visual approach shall be instructed as follows:

|                                           | Zagreb Tower, CTN662, on final RWY05 |
|-------------------------------------------|--------------------------------------|
| CTN662, Zagreb Tower, continue            |                                      |
| approach, expect landing clearance        |                                      |
| shortly, RWY occupied by landing aircraft |                                      |
|                                           | Continuing approach, roger, CTN662   |
| CTN662, cleared to land, wind 060/7kt     |                                      |
|                                           | Cleared to land, CTN662              |
| CTN662, correct                           |                                      |

### VFR FLIGHT

|                                                                                                                                         | Zagreb Tower, 9ADKH departed from Lučko<br>to Zagreb, maintaining 1500 ft, for landing<br>(request joining instructions). |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 9ADKH, Zagreb Tower, RWY in use 05,<br>wind 060º/5kt, QNH 1018, join left-hand<br>traffic circuit RWY 05, report downwind,<br>at 1500ft |                                                                                                                           |

RWY 05, QNH 1018, to join left-hand downwind RWY 05, wilco, 1500ft, 9ADKH

9ADKH, correct

When there is no other traffic or there is sufficient time before another approaching traffic:

|                                       | Zagreb Tower, 9ADKH departed from Lučko     |
|---------------------------------------|---------------------------------------------|
|                                       | to Zagreb, maintaining 1500ft, for landing. |
| 9ADKH, Zagreb Tower, join left-hand   |                                             |
| base RWY 05, wind 060º/5kt, QNH 1018. |                                             |
|                                       | To join left-hand base RWY 05, QNH 1018,    |
|                                       | 9ADKH.                                      |
| 9ADKH correct.                        |                                             |
|                                       | 9ADKH on left-hand base RWY05               |
| 9ADKH roger, cleared to land RWY05,   |                                             |
| wind 060º/5kt                         |                                             |
|                                       | Cleared to land, 9ADKH                      |
| 9ADKH correct                         |                                             |

Instructions to arriving traffic NDB Approach RWY 23 (Initial/intermediate fix /holding ZAG VOR)

|                                       | Zagreb Tower, CTN662, 7 miles ZAG |
|---------------------------------------|-----------------------------------|
|                                       | DME/inbound SK                    |
| CTN662, Zagreb Tower, continue        |                                   |
| approach, report SK inbound/final RWY |                                   |
| 23.                                   |                                   |
|                                       | CTN662 wilco                      |
|                                       | CTN662 passing SK                 |
| CTN662 cleared to land RWY 23 wind    |                                   |
| 200º/10kt                             |                                   |
|                                       | Cleared to land RWY 23, CTN662    |
| CTN662 correct                        |                                   |

Instructions to arriving traffic for LZ Approach RWY 23 (Initial/intermediate fix /holding ZAG VOR)

|                                         | Zagreb Tower, CTN662, inbound SK. |
|-----------------------------------------|-----------------------------------|
| CTN662, Zagreb Tower, roger, report SK. |                                   |
|                                         | CTN662 wilco                      |
|                                         | CTN662, passing SK.               |

| CTN662, roger continue approach,         |                                    |
|------------------------------------------|------------------------------------|
| expect landing clearance shortly, runway |                                    |
| still occupied                           |                                    |
|                                          | Continuing approach, roger, CTN662 |
| CTN662, cleared to land RWY 23, wind     |                                    |
| 195/11 kt                                |                                    |
|                                          | Cleared to land RWY 23, CTN662     |
| CTN662 correct                           |                                    |

### Exercise 18: Preparation for "Aerodrome simulator"

There are 7 flight strips for 7 various aircraft flying in CTR Zagreb. Complete the communication while these aircraft are flying simultaneously in CTR Zagreb. Students are grouped into pairs, one being an air traffic controller and the other one pilot. Each pair of students handles one aircraft (reproduces the communication).

### 1. WHITE AIRCRAFT

| IFR     |      |         |      | ETO/PIS     |  |
|---------|------|---------|------|-------------|--|
|         |      | SWR 123 |      | 10:13       |  |
|         | 400  | LSZH    | LDZA |             |  |
| INITIAI | CALL |         |      | · · · · · · |  |
| P:      |      |         |      |             |  |
| C:      |      |         |      |             |  |
| P:      |      |         |      |             |  |
|         |      |         |      |             |  |
|         |      | ARANCE  |      |             |  |
| P:      |      |         |      |             |  |
| C:      |      |         |      |             |  |
| P:      |      |         |      |             |  |
|         |      |         |      |             |  |
|         |      | E RUNV  |      |             |  |
| C:      |      |         |      |             |  |
|         |      |         |      |             |  |
| C:      |      |         |      |             |  |

| 2.      | BLACK A   | IRCRAF        | Т    |       |   |
|---------|-----------|---------------|------|-------|---|
| VFR     | C172/L    | 0001<br>9ADAP |      | 1500' |   |
|         |           |               |      | TGL   |   |
|         | 100       | LDZA          | LDZA |       |   |
| TAXI IN | ISTRUCTI  | ONS           |      | L     | 1 |
| P:      |           |               |      |       |   |
|         |           |               |      |       |   |
|         |           |               |      |       |   |
| P:      |           |               |      |       |   |
|         |           |               |      |       |   |
| ATC CL  | .EARANCI  | E             |      |       |   |
| P:      |           |               |      |       |   |
| C:      |           |               |      |       |   |
|         |           |               |      |       |   |
| P:      |           |               |      |       |   |
| C:_     |           |               |      |       |   |
| TAKE C  | OFF CLEAI | RANCE         |      |       |   |
| P:      |           |               |      |       |   |
| C:      |           |               |      |       |   |
| P:_     |           |               |      |       |   |
|         |           |               |      |       |   |
| IN THE  | TRAFFIC   | CIRCUIT       | Г    |       |   |
|         |           |               |      |       |   |
| C:_     |           |               |      |       |   |
|         |           |               |      |       |   |
| C:_     |           |               |      |       |   |
|         | TO DO A   |               |      |       |   |
|         |           |               |      |       |   |
|         |           |               |      |       |   |
|         |           |               |      |       |   |
|         |           |               |      |       |   |
| •       | EARANCE   |               |      |       |   |
|         |           |               |      |       |   |
|         |           |               |      |       |   |
|         |           |               |      |       |   |
| C:_     |           |               |      |       |   |

# 2. BLACK AIRCRAFT

# 3. BLUE AIRCRAFT

| VFR     | C172/L   | 0010  |      | LDZL 1500' 10:05 |  |  |  |
|---------|----------|-------|------|------------------|--|--|--|
|         | 01/2/2   | 9ABBC |      | 1LA AT LDZA      |  |  |  |
|         |          |       |      | 3000' N          |  |  |  |
|         | 100      | ודחו  | LDOS |                  |  |  |  |
| INITIAI |          | LDZL  | LDO3 |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
| C       |          |       |      |                  |  |  |  |
| p٠      |          |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
|         |          |       |      | UCTIONS          |  |  |  |
|         |          |       |      |                  |  |  |  |
| C:      |          |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
|         | TO DO AI |       |      |                  |  |  |  |
| P:      |          |       |      |                  |  |  |  |
| C:      |          |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
| L/A CL  | EARANCE  |       |      |                  |  |  |  |
| P:      |          |       |      |                  |  |  |  |
| C:      |          |       |      |                  |  |  |  |
| P:      |          |       |      |                  |  |  |  |
| C:      |          |       |      |                  |  |  |  |
|         | FER OF C | ONTRO | L    |                  |  |  |  |
| C:      |          |       |      |                  |  |  |  |
|         | P:       |       |      |                  |  |  |  |
|         | P:       |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
|         |          |       |      |                  |  |  |  |
| C:      |          |       |      |                  |  |  |  |

# 4. RED AIRCRAFT

| IFR    | A320/M    | 65      | 54   | FL140    |  |  |
|--------|-----------|---------|------|----------|--|--|
|        | 380       | CTN 416 |      | OBUTI 1H |  |  |
|        |           |         |      |          |  |  |
|        | 450       |         | EDDF |          |  |  |
|        | •         |         |      | ORMATION |  |  |
| P:     |           |         |      |          |  |  |
| C:     |           |         |      |          |  |  |
| P:     |           |         |      |          |  |  |
| C:     |           |         |      |          |  |  |
| START  | UP        |         |      |          |  |  |
| P:     |           |         |      |          |  |  |
| C:     |           |         |      |          |  |  |
| P:     |           |         |      |          |  |  |
| C:     |           |         |      |          |  |  |
|        | NSTRUCTIC |         |      |          |  |  |
| P:     |           |         |      |          |  |  |
|        |           |         |      |          |  |  |
| P:     |           |         |      |          |  |  |
|        |           |         |      |          |  |  |
|        | EARANCE   |         |      |          |  |  |
| P:     | P:        |         |      |          |  |  |
| C:     | C:        |         |      |          |  |  |
| P:     |           |         |      |          |  |  |
| C:     | P:<br>C:  |         |      |          |  |  |
|        |           |         |      |          |  |  |
| ΤΑΚΕ Ο | OFF CLEAR | ANCE    |      |          |  |  |

| P:                  |  |  |
|---------------------|--|--|
| C:                  |  |  |
| P:                  |  |  |
| C:                  |  |  |
| TRANSFER OF CONTROL |  |  |
| C:                  |  |  |
| P:                  |  |  |
| C:                  |  |  |

| VFR         C150/L         2000'           INITIAL CALL         N1 AT 10:09           P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. 0    | SKEEN AIR | CRAFI |      |             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------|------|-------------|--|--|--|
| 100         LDVA         LDZA           INITIAL CALL         P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VFR     | C150/L    |       |      | 2000'       |  |  |  |
| INITIAL CALL         P:         C:         P:         C:         TRAFFIC CIRCUIT JOINING INSTRUCTIONS         P:         C:         TRAFFIC CIRCUIT JOINING INSTRUCTIONS         P:         C:         IN THE TRAFFIC CIRCUIT         P:         C:         P:         C:         IN THE TRAFFIC CIRCUIT         P:         C:         P:         C:         VADING CLEARANCE         P:         C:         VACATING THE RUNWAY         C:         VACATING THE RUNWAY         C:         P:         P:         P: | -       |           | 9ACDH |      | N1 AT 10:09 |  |  |  |
| P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 100       | LDVA  | LDZA |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INITIAL | CALL      |       |      | ·,          |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P:      |           |       |      |             |  |  |  |
| P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P:      |           |       |      |             |  |  |  |
| TRAFFIC CIRCUIT JOINING INSTRUCTIONS         P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |       |      |             |  |  |  |
| C:<br>P:<br>C:<br>IN THE TRAFFIC CIRCUIT<br>P:<br>C:<br>P:<br>C:<br>LANDING CLEARANCE<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>VACATING THE RUNWAY                                                                                                                                                                                                          |         |           |       |      |             |  |  |  |
| C:<br>P:<br>C:<br>IN THE TRAFFIC CIRCUIT<br>P:<br>C:<br>P:<br>C:<br>LANDING CLEARANCE<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>P:<br>C:<br>VACATING THE RUNWAY                                                                                                                                                                                                          | P:      |           |       |      |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P:      |           |       |      |             |  |  |  |
| P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P:      |           |       |      |             |  |  |  |
| P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |             |  |  |  |
| C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |       |      |             |  |  |  |
| LANDING CLEARANCE P: C: P: C: VACATING THE RUNWAY C: P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |           |       |      |             |  |  |  |
| C:<br>P:<br>C:<br>VACATING THE RUNWAY<br>C:<br>P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LANDIN  | G CLEARA  | NCE   |      |             |  |  |  |
| P: C: VACATING THE RUNWAY C: P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P:      |           |       |      |             |  |  |  |
| C:<br>VACATING THE RUNWAY<br>C:<br>P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C:      |           |       |      |             |  |  |  |
| C:<br>VACATING THE RUNWAY<br>C:<br>P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P:      |           |       |      |             |  |  |  |
| C:<br>P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C:      |           |       |      |             |  |  |  |
| P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VACATI  | NG THE RU | JNWAY |      |             |  |  |  |
| P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C:      |           |       |      |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |       |      |             |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |       |      |             |  |  |  |

# 5. GREEN AIRCRAFT

|      | 0      |          |       |      |       |  |
|------|--------|----------|-------|------|-------|--|
|      | VFR    | PA18/L   | 0015  |      | 2500' |  |
|      |        |          | 9ADBR |      | S1    |  |
|      |        | 110      | LDZA  | LDSS |       |  |
| TAX  | (I INS | TRUCTION | IS    |      |       |  |
|      | P:     |          |       |      |       |  |
|      | C:     |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      | P:     |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      |        | ARANCE   |       |      |       |  |
|      | P:     |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      | P:     |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      |        | CLEARA   |       |      |       |  |
|      | P:     |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      | P:     |          |       |      |       |  |
|      | C:     |          |       |      |       |  |
|      |        | R OF CON |       |      |       |  |
| C:   |        |          |       |      |       |  |
| P: _ |        |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      |        |          |       |      |       |  |
|      | P:     |          |       |      |       |  |
|      |        |          |       |      |       |  |

| _            |              |               |      |              |             |
|--------------|--------------|---------------|------|--------------|-------------|
|              | VFR          | C172/L        |      |              | 2000'       |
|              |              |               | 9A[  | DEF          | S1 AT 10:10 |
| Ļ            |              |               |      | - <b>-</b> · |             |
|              |              | 110           | LDSP | LDZA         |             |
| IN           | TIAL C       | ALL           |      |              |             |
|              | P:           |               |      |              |             |
|              |              |               |      |              |             |
|              |              |               |      |              |             |
|              | P:           |               |      |              |             |
|              | C:           |               |      |              |             |
| TR           |              | CIRCUIT J     |      |              |             |
|              |              |               |      |              |             |
|              | C:           |               |      |              |             |
|              |              |               |      |              |             |
|              | с.<br>С.     |               |      |              |             |
| IN           |              | RAFFIC CI     |      |              |             |
|              |              |               |      |              |             |
|              | г. <u> </u>  |               |      |              |             |
|              | с. <u> </u>  |               |      |              |             |
|              | · · <u> </u> |               |      |              |             |
| ۱Δ           |              | <b>CLEARA</b> | NCF  |              |             |
|              |              |               |      |              |             |
|              |              |               |      |              |             |
|              |              |               |      |              |             |
|              | г. <u> </u>  |               |      |              |             |
| \ <i>/</i> ^ |              | G THE RU      |      |              |             |
|              |              |               |      |              |             |
|              |              |               |      |              |             |
|              |              |               |      |              |             |
| C:           |              |               |      |              |             |

# **10 LITERATURE**

[1] Basic ATCO training plan and program – training course, Issue: 1, Rev:01, 3.11.2016

[2] Commission Implementing Regulation (EU) 2016/1185 of 20 July 2016

[3] Doc 9432, Manual of Radiotelephony, ICAO, 2006

[4] ICAO Annex 10 Aeronautical Telecommunications Volume II, Chapter 5, ICAO, 2001

[5] AIC A 006/2017 Postupci za obavljanje govorne komunikacije, HKZP, listopad 2017

[6] RMIT English Worldwide: Aviation English Radiotelephony English for Air Traffic Controllers, RMIT Training Pty Ltd, Melbourne, 2007

[7] https://wiki.mediu.edu.my/en/q/ /c/Q code.html

[8] CAA Manual of Radiotelephony CAP413

[9] Doc 4444, Procedures for Air Navigation Services - Air Traffic Management, Chapter 12, ICAO, 2016

- [10] ICAO Annex 14 Aerodromes, Volume I, ICAO, 2007
- [11] Robertson, F. A., Airspeak, Pearson Longman, 2008
- [12] APSL-[4]ADI-030102016-REV03, 2016

[13]<u>http://www.crocontrol.hr/UserDocsImages/AIS%20produkti/VFR%20karta/VFR\_01MAR</u> 2018-FS-sektor5.pdf

[14] Zbornik zrakoplovnih informacija Republike Hrvatske, Hrvatska kontrola zračne plovidbe d.o.o., 2018.

- [15] ICAO Doc 7910 Location Indicators, ICAO, 2009.
- [16] ICAO Doc 8585 Designators for Aircraft Operating Agencies,. ICAO, 2010
- [17] HUSK Obrazac za praćenje napretka kandidata na praktičnim vježbama na simulatoru

# **11 APPENDICES**



# APPENDIX 1: VFR Chart of Zagreb CTR (LDZA and LDZL) [13]

# APPENDIX 2: List Of Location Indicators, Runway Designators And Aerodromes In Croatia

#### RUNWAY ABBREVIATION LOCATION LDDU 12/30 Dubrovnik/Čilipi LDLO 02/20 Lošinj/Lošinj I. 11/29 LDOS Osijek/Klisa Pula/Pula 09/27 LDPL LDRI 14/32 Rijeka/Krk I. Brač/Brač I. LDSB 04/22 05/23 Split/Kaštela (only R-H circuit for 05 and L-H for 23 due to Kozjak) LDSP LDZA 05/23 Zagreb/Pleso LDZL 28L710R Zagreb/Lučko Zadar/Zemunik LDZD 04/22 LDZD 14/32 Zadar/Zemunik

### The following list is taken from the Croatian AIP [15]

# APPENDIX 3: List Of Call Sign And Aerodrome Destination Abbreviations [15]

| ABBREVIATION | CALL SIGN    |
|--------------|--------------|
| AAL          | American     |
| AFR          | Airfrance    |
| AUA          | Austrian     |
| AZA          | Alitalia     |
| BAW          | Speedbird    |
| BER          | Air Berlin   |
| CFG          | Condor       |
| CTN          | Croatia      |
| СҮР          | Cyprus       |
| DLH          | Lufthansa    |
| ELY          | Elal         |
| EWG          | Eurowings    |
| EZY          | Easy         |
| GWI          | German wings |
| HLF          | Hapag Lloyd  |
| JAT          | Jat          |
| LGL          | Luxair       |
| LTU          | Ltu          |
| MGX          | Montenegro   |
| МРН          | Martinair    |
| OAL          | Olympic      |
| PGT          | Sunturk      |
| SAS          | Scandinavian |
| SVA          | Saudia       |
| SWR          | Swiss        |
| TAR          | Tunair       |
| тсх          | Kestrel      |
| ТНҮ          | Turkish      |
| UAE          | Emirates     |
| UAL          | United       |
| WZZ          | Wizair       |

| LOC.      | AERODROME       |
|-----------|-----------------|
| INDICATOR |                 |
| DTTA      | Tunis           |
| EDDF      | Frankfurt       |
| EDDL      | Dusseldorf      |
| EDDN      | Nurnberg        |
| EDDS      | Stuttgart       |
| EDNY      | Friedrichshafen |
| EGCC      | Manchester      |
| EGLL      | London          |
| EGNT      | Newcastle       |
| EHAM      | Amsterdam       |
| HECA      | Cairo           |
| HEGN      | Hurghada        |
| LBSF      | Sofia           |
| LCLK      | Larnaca         |
| LFPG      | Paris           |
| LGAT      | Athena          |
| LGIR      | Hraklion        |
| LGKO      | Kos             |
| LGRP      | Rodos           |
| LGTS      | Thessaloniki    |
| LHBP      | Budapest        |
| LIRF      | Rome            |
| LLBG      | Tel Aviv        |
| LOWW      | Vienna          |
| LSZH      | Zurich          |
| LTBA      | Istanbul        |
| LWSK      | Skopje          |
| LYBG      | Belgrade        |
| LYPG      | Podgorica       |
| OEKK      | Saudi Arabia    |

# **APPENDIX 4: List of Tables**

| Table 1: Radiotelephony spelling alphabet                                              | 6            |
|----------------------------------------------------------------------------------------|--------------|
| Table 2: Pronunciation of numbers                                                      | 7            |
| Table 3: Pronunciation of more digit numbers                                           | 7            |
| Table 4: Pronunciation of numbers containing decimal point                             | 8            |
| Table 5: Transmission of time                                                          |              |
| Table 6: Aeronautical station call signs                                               |              |
| Table 7: Aircraft call signs                                                           |              |
| Table 8: Standard words and phrases                                                    |              |
| Table 9: Readability scale                                                             | 26           |
| Table 10: ATC units and their frequencies used for Radar Simulator exercises at the De | epartment of |
| aeronautics:                                                                           | 27           |
| Table 11: Altimeter settings                                                           |              |
| Table 12: Direction finding                                                            |              |
| Table 13: MTOM minima are categorized as follows                                       |              |
| Table 14: Amount of water on the runway                                                |              |
| Table 15: Braking action                                                               |              |
| Table 16: Sky covering                                                                 |              |
|                                                                                        |              |

# **APPENDIX 5: List of Abbreviations**

| ANSP  | Air Navigation Service Provider           |
|-------|-------------------------------------------|
| ATC   | Air Traffic Control                       |
| ATCO  | Air Traffic Control Officer               |
| ATS   | Air Traffic Services                      |
| CPDLC | Controller-pilot data link communications |
| CTR   | Control Zone                              |
| EASA  | European Aviation Safety Agency           |
| EAT   | Expected Approach Time                    |
| ETA   | Estimated Time of Arrival                 |
| FIS   | Flight Information Service                |
| GMT   | Greenwich Meridian Time                   |
| ICAO  | International Civil Aviation Organization |
| IFR   | Instrument Flight Rules                   |
| RVR   | Runway Visual Range                       |
| UTC   | Universal Time Coordinated                |
| VFR   | Visual Flight Rules                       |
| VHF   | Very High Frequency                       |
|       |                                           |

# **APPENDIX 6: Exercise for RTK I mid-term exam**

I WHAT MUST ALWAYS BE READ BACK?

| 1   | 12        |
|-----|-----------|
| 2   | 13        |
| 3   |           |
| 4   |           |
| 5   |           |
| 6   |           |
| 7   |           |
| 8   |           |
| 9   | <u>f)</u> |
| 10  |           |
| 11. | h)        |

II WRITE DOWN THE PROCEDURE WORDS WITH THE FOLLOWING MEANING:

- 1. Beware of the following condition or situation \_\_\_\_\_\_.
- 2. A change has been made to your last clearance and this new clearance supersedes your previous clearance or part thereof \_\_\_\_\_\_.
- 3. An error has been made in this transmission. The correct version is...
- 4. Annul the previously transmitted clearance \_\_\_\_\_\_.
- Authorized to proceed under the conditions specified \_\_\_\_\_\_.

III PROVIDE DEFINITIONS FOR THE FOLLOWING PROCEDURE WORDS:

- 1. contact \_\_\_\_\_\_
- 2. affirm \_\_\_\_\_\_
- 3. climb \_\_\_\_\_\_
- 4. wilco \_\_\_\_\_
- 5. monitor\_\_\_\_\_

IV WRITE DOWN HOW TO PRONOUNCE THE FOLLOWING NUMBERS IN RTF COM:

- 1. Mach number 0.74 \_\_\_\_\_\_
- 2. make one 180 \_\_\_\_\_\_
- 3. wind 200º 15kn
- 4. squawk 7500 \_\_\_\_\_
- 5. distance 15.5 km \_\_\_\_\_
- 6. altitude 3 500 \_\_\_\_\_
- 7. heading 250 \_\_\_\_\_
- 8. FL 300
- 9. time 1000 \_\_\_\_\_\_
- 10. frequency 118,275\_\_\_\_\_

#### V ANSWER THE QUESTIONS:

- 1. What is QNH? \_\_\_\_\_
- 2. A condition concerning the safety of an aircraft which requires immediate assistance is \_
- 3. A message concerning the safety of an aircraft but does not require immediate assistance is called
- 4. Aircraft in the heavy wake turbulence category shall include the word "HEAVY" immediately after the aircraft call sign in the initial call between such aircraft and \_\_\_\_\_\_

\_\_\_\_\_ units.

5. How can the call sign Cessna ABCD be abbreviated?

- 6. How can the call sign CTN123 be abbreviated?
- Must a "general call" be acknowledged and how? \_\_\_\_\_

8. Must a "multiple call" be acknowledged and how?

- 9. What does the term WET (amount of water on the runway) mean?\_\_\_\_\_
- 10. What is QDR?
- 11. What is the radiotelephony call sign for the aeronautical station providing surface movement control?
- 12. When transmitting time, which time system shall be used?\_\_\_\_\_

VI PROVIDE AN EXAMPLE OF THE INITIAL CALL BETWEEN AN AIRCRAFT AND THE ATSU PROVIDING AERODROME CONTROL SERVICE.

P: \_\_\_\_\_ C:\_\_\_\_\_

VII HOW IS CLOUD COVER REPORTED IN OCTAS:

- 1.\_\_\_\_\_
- 2. \_\_\_\_\_

3.\_\_\_\_\_4.

VIII PROVIDE TERMS FOR THE FOLLOWING DEFINITIONS:

- 1. \_\_\_\_\_A unit established to provide air traffic control service to controlled flights arriving at, or departing from, one or more aerodromes.
- 2. \_\_\_\_\_ The vertical distance of a level, a point or an object considered as a point, measured from mean sea level.
- 3. \_\_\_\_\_ A generic term meaning variously, air traffic control unit, flight information centre or air traffic services reporting office.
- 4. A specified route designated for channelling the flow of traffic as necessary for the provision of air traffic services.

- 5. \_\_\_\_\_ An airspace of detailed dimensions established around an aerodrome for the protection of aerodrome traffic.
- 6. One-way communication from aircraft to stations or locations on the surface of the earth.
- 7. \_\_\_\_\_ A controlled airspace extending upwards from a specified limit above the earth.
- 8. \_\_\_\_\_ A transmission from one station to another station in circumstances where two-way communication cannot be established but where it is believed that the called station is able to receive the transmission.
- 9. \_\_\_\_\_ Directives issued by air traffic control for the purpose of requiring a pilot to take a specific action.
- 10. \_\_\_\_\_ The elevation of the highest point of the landing area.

IX PROVIDE AN INITIAL CALL AND DEPARTURE INFORMATION TO AN IFR FLIGHT (14 POINTS):

| P:  |  |  |
|-----|--|--|
| C:  |  |  |
|     |  |  |
| D٠  |  |  |
| · · |  |  |
| C:  |  |  |

# X NAME WAKE TURBULENCE CATEGORIES AND ITS MTOM (9 points):

| 1 | 3 |
|---|---|
| 2 | 4 |

XI NAME CATEGORIES OF MESSAGES IN THE CORRECT ORDER (7 points):

- 1.

   2.

   3.

   4.

   5.
- 6. \_\_\_\_\_
- 7. \_\_\_\_\_

XII GIVE EXAMPLES OF THE FOLLOWING INSTRUCTIONS AND CLEARANCES:

| 1. | INITIAL CALL AND DEPARTURE INFORMATION TO AN IFR FLIGHT | (14 POINTS): |
|----|---------------------------------------------------------|--------------|
|    |                                                         | (1110)       |

| P:                                                                    |  |
|-----------------------------------------------------------------------|--|
| C:                                                                    |  |
|                                                                       |  |
| P:                                                                    |  |
| C:                                                                    |  |
| ASK THE PILOT IF S/HE WANTS TO RECEIVE ATS ROUTE CLEARANCE (4 POINTS) |  |
| C:                                                                    |  |

P:

2.

#### 3. ATS ROUTE CLEARANCE TO A VFR FLIGHT FROM ZAGREB TO OSIJEK (13 POINTS):

| VF | R C172/L | 0017  |     | 3000' |  |
|----|----------|-------|-----|-------|--|
|    |          | 9ADEG |     | E     |  |
|    | 100      | L     | DOS |       |  |

#### C:\_\_\_\_\_

P:\_\_\_\_\_

- \_\_\_\_\_C:
- 4. ATS ROUTE CLEARANCE TO A VFR TRAINING FLIGHT AT ZAGREB FOR RUNWAY 05 (15 POINTS):

| VFR | PA18/L | 0005      |  | 1500' |  |
|-----|--------|-----------|--|-------|--|
|     |        | 9ADPA     |  | TGL   |  |
|     | 110    | LDZA LDZA |  |       |  |

C:\_\_\_\_\_

\_\_\_\_\_ P:\_\_\_\_\_

C:\_\_\_\_\_

5. INSTRUCTION THAT THE A/C IS TO BE STARTED WHEN THE PILOT WANTS, DEP. SLOT 1035 (11 POINTS):

P:\_\_\_\_\_

| C: |                                                                           |
|----|---------------------------------------------------------------------------|
| P: |                                                                           |
| C: |                                                                           |
|    | CONFERT TO THE AND CALLING TO REPEAT ITS TRANSPORTION RECAUSE YOU ARE NOT |

 REQUEST TO THE AIRCRAFT CALLING TO REPEAT ITS TRANSMISSION BECAUSE YOU ARE NOT CERTAIN OF ITS CALLSIGN (3 POINTS):
 C:

 7. ATS ROUTE CLEARANCE TO AN IFR FLIGHT FROM ZAGREB TO DUBROVNIK (13 POINTS):

 IFR
 A320/M
 7073

 FL130
 CTN646
 TEBLI2C

| - |
|---|

C:

460

1125 LDDU

8. INSTRUCTION THAT THE AIRCRAFT IS PROBABLY TO START UP AT A CERTAIN TIME (6 POINTS): P:\_\_\_\_\_

C:\_\_\_\_\_ P:

9. INSTRUCTION TO THE PILOT NOT TO ENTER THE RUNWAY (5 POINTS):

C:\_\_\_\_\_ P:\_\_\_\_\_ C:

10. GENERAL CALL TO INFORM THE PILOTS THAT THE RUNWAY CENTERLINE LIGHTS ARE NOT WORKING (3 POINTS):

C:\_\_\_\_\_

# **APPENDIX 7: Exercise for RTK I end-of-the-term exam**

I GIVE EXAMPLES OF THE FOLLOWING INSTRUCTIONS AND CLEARANCES:

- 1. INITIAL CALL AND DEPARTURE INFORMATION TO AN IFR FLIGHT (14 POINTS):
  - P:\_\_\_\_\_ C:\_\_\_\_\_ P:\_\_\_\_\_ C:

### 2. ASK THE PILOT IF S/HE WANTS TO RECEIVE ATS ROUTE CLEARANCE (4 POINTS)

- C:\_\_\_\_\_
- P: \_\_\_\_\_

### 3. ATS ROUTE CLEARANCE TO A VFR FLIGHT FROM ZAGREB TO OSIJEK (13 POINTS):

| VFR | C172/L | 0017  |      | 3000' |  |
|-----|--------|-------|------|-------|--|
|     |        | 9ADEG |      | E     |  |
|     | 100    |       | LDOS |       |  |

### C:\_\_\_\_\_

- P:\_\_\_\_\_
- C:

### 4. ATS ROUTE CLEARANCE TO A VFR TRAINING FLIGHT AT ZAGREB FOR RUNWAY 05 (15 POINTS):

| VFR | PA18/L | 0005  |      | 1500' |  |
|-----|--------|-------|------|-------|--|
|     |        | 9ADPA |      | TGL   |  |
|     | 110    | LDZA  | LDZA |       |  |

# C:\_\_\_\_\_ P:\_\_\_\_\_ C: \_\_\_\_\_

5. INSTRUCTION THAT THE A/C IS TO BE STARTED WHEN THE PILOT WANTS, DEP. SLOT 1035 (11 POINTS):

| P: _ |  |
|------|--|
| C:   |  |
| P:   |  |
| C:   |  |
| _    |  |

6. REQUEST TO THE AIRCRAFT CALLING TO REPEAT ITS TRANSMISSION BECAUSE YOU ARE NOT CERTAIN OF ITS CALLSIGN (3 POINTS):

C:\_\_\_\_\_

7. ATS ROUTE CLEARANCE TO AN IFR FLIGHT FROM ZAGREB TO DUBROVNIK (13 POINTS):

| IFR | A320/M | 7073   |      | FL130   |  |
|-----|--------|--------|------|---------|--|
|     |        | CTN646 |      | TEBLI2C |  |
|     | 460    | 1125   | LDDU |         |  |

|    | C:                                                                                  |
|----|-------------------------------------------------------------------------------------|
|    | P:                                                                                  |
|    | C:                                                                                  |
| 8. | INSTRUCTION THAT THE AIRCRAFT IS PROBABLY TO START UP AT A CERTAIN TIME (6 POINTS): |
|    | P:                                                                                  |
|    | C:                                                                                  |
|    | р.                                                                                  |

- 9. INSTRUCTION TO THE PILOT NOT TO ENTER THE RUNWAY (5 POINTS):
  - C:\_\_\_\_\_ P:\_\_\_\_\_ C:
- 10. UPON LANDING INSTRUCTION TO LEAVE THE RUNWAY 05 AND GO TO THE APRON (5 POINTS):

C:\_\_\_\_\_ P:\_\_\_\_\_ C:

11. GENERAL CALL TO INFORM THE PILOTS THAT THE RUNWAY CENTERLINE LIGHTS ARE NOT WORKING (3 POINTS):

C:\_\_\_\_\_

- 12. INSTRUCTION TO THE PILOT WHAT TO DO AFTER LAW APPROACH (LDZA RWY 05) (\_\_\_\_/4): C:\_\_\_\_\_

15. ASK THE PILOT IF S/HE WANTS TO TAKE OFF (\_\_\_\_/3 POINTS):

C:\_\_\_\_\_

# APPENDIX 8: ICAO Doc 4444 Definitions [4]

*Accepting unit/controller.* Air traffic control unit/air traffic controller next to take control of an aircraft.

Note. — See definition of "transferring unit/controller".

*Advisory airspace.* An airspace of defined dimensions, or designated route, within which air traffic advisory service is available.

*Advisory route.* A designated route along which air traffic advisory service is available. *Note.*— *Air traffic control service provides a much more complete service than air traffic advisory service; advisory areas and routes are therefore not established within controlled airspace, but air traffic advisory service may be provided below and above control areas.* 

**Aerodrome.** A defined area on land or water (including any buildings, installations and equipment) intended to be used either wholly or in part for the arrival, departure and surface movement of aircraft.

Note.— The term "aerodrome" where used in the provisions relating to flight plans and ATS messages is intended to cover also sites other than aerodromes which may be used by certain types of aircraft, e.g. helicopters or balloons.

Aerodrome control service. Air traffic control service for aerodrome traffic.

*Aerodrome control tower.* A unit established to provide air traffic control service to aerodrome traffic.

Aerodrome elevation. The elevation of the highest point of the landing area.

*Aerodrome traffic.* All traffic on the manoeuvring area of an aerodrome and all aircraft flying in the vicinity of an aerodrome.

*Note.*— *An aircraft is in the vicinity of an aerodrome when it is in, entering or leaving an aerodrome traffic circuit.* 

*Aerodrome traffic circuit.* The specified path to be flown by aircraft operating in the vicinity of an aerodrome.

**Aeronautical fixed service (AFS).** A telecommunication service between specified fixed points provided primarily for the safety of air navigation and for the regular, efficient and economical operation of air services.

Aeronautical fixed station. A station in the aeronautical fixed service.

*Aeronautical ground light.* Any light specially provided as an aid to air navigation, other than a light displayed on an aircraft.

*Aeronautical Information Publication (AIP).* A publication issued by or with the authority of a State and containing aeronautical information of a lasting character essential to air navigation. *Aeronautical mobile service.* A mobile service between aeronautical stations and aircraft stations, or between aircraft stations, in which survival craft stations may participate;

emergency position-indicating radio beacon stations may also participate in this service on designated distress and emergency frequencies.

*Aeronautical station.* A land station in the aeronautical mobile service. In certain instances, an aeronautical station may be located, for example, on board ship or on a platform at sea. *Aeronautical telecommunication station.* A station in the aeronautical telecommunication service.

*Airborne collision avoidance system (ACAS).* An aircraft system based on secondary surveillance radar (SSR) transponder signals which operates independently of ground-based equipment to provide advice to the pilot on potential conflicting aircraft that are equipped with SSR transponders.

*Aircraft.* Any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth's surface.

*Aircraft address.* A unique combination of 24 bits available for assignment to an aircraft for the purpose of air-ground communications, navigation and surveillance.

*Aircraft identification.* A group of letters, figures or a combination thereof which is either identical to, or the coded equivalent of, the aircraft call sign to be used in air-ground communications, and which is used to identify the aircraft in ground-ground air traffic services communications.

*Aircraft observation.* The evaluation of one or more meteorological elements made from an aircraft in flight.

*Aircraft proximity.* A situation in which, in the opinion of a pilot or air traffic services personnel, the distance between aircraft as well as their relative positions and speed have been such that the safety of the aircraft involved may have been compromised. An aircraft proximity is classified as follows:

*Risk of collision.* The risk classification of an aircraft proximity in which serious risk of collision has existed.

*Safety not assured.* The risk classification of an aircraft proximity in which the safety of the aircraft may have been compromised.

*No risk of collision.* The risk classification of an aircraft proximity in which no risk of collision has existed.

*Risk not determined.* The risk classification of an aircraft proximity in which insufficient information was available to determine the risk involved, or inconclusive or conflicting evidence precluded such determination.

*Air-ground communication.* Two-way communication between aircraft and stations or locations on the surface of the earth.

**AIRMET information.** Information issued by a meteorological watch office concerning the occurrence or expected occurrence of specified en-route weather phenomena which may affect

the safety of low-level aircraft operations and which was not already included in the forecast issued for low-level flights in the flight information region concerned or sub-area thereof.

**AIRPROX.** The code word used in an air traffic incident report to designate aircraft proximity. **Air-report.** A report from an aircraft in flight prepared in conformity with requirements for position, and operational and/or meteorological reporting.

*Air-taxiing.* Movement of a helicopter/VTOL above the surface of an aerodrome, normally in ground effect and at a ground speed normally less than 37 km/h (20 kt).

Note.— The actual height may vary, and some helicopters may require air-taxiing above 8 m (25 ft) AGL to reduce ground effect turbulence or provide clearance for cargo slingloads.

*Air-to-ground communication.* One-way communication from aircraft to stations or locations on the surface of the earth.

*Air traffic.* All aircraft in flight or operating on the manoeuvring area of an aerodrome.

*Air traffic advisory service.* A service provided within advisory airspace to ensure separation, in so far as practical, between aircraft which are operating on IFR flight plans.

*Air traffic control clearance.* Authorization for an aircraft to proceed under conditions specified by an air traffic control unit.

*Note 1.— For convenience, the term "air traffic control clearance" is frequently abbreviated to "clearance" when used in appropriate contexts.* 

Note 2.— The abbreviated term "clearance" may be prefixed by the words "taxi", "take-off", "departure", "en-route", "approach" or "landing" to indicate the particular portion of flight to which the air traffic control clearance relates.

*Air traffic control instruction.* Directives issued by air traffic control for the purpose of requiring a pilot to take a specific action.

*Air traffic control service.* A service provided for the purpose of:

a) preventing collisions: 1) between aircraft, and 2) on the manoeuvring area between aircraft and obstructions; and

b) expediting and maintaining an orderly flow of air traffic.

*Air traffic control unit.* A generic term meaning variously, area control centre, approach control unit or aerodrome control tower.

*Air traffic flow management (ATFM).* A service established with the objective of contributing to a safe, orderly and expeditious flow of air traffic by ensuring that ATC capacity is utilized to the maximum extent possible, and that the traffic volume is compatible with the capacities declared by the appropriate ATS authority.

Air traffic management (ATM). The dynamic, integrated management of air traffic and airspace including air traffic services, airspace management and air traffic flow management — safely, economically and efficiently — through the provision of facilities and seamless services in collaboration with all parties and involving airborne and ground-based functions.

*Air traffic management system.* A system that provides ATM through the collaborative integration of humans, information, technology, facilities and services, supported by air and ground- and/or space-based communications, navigation and surveillance.

*Air traffic service (ATS).* A generic term meaning variously, flight information service, alerting service, air traffic advisory service, air traffic control service (area control service, approach control service or aerodrome control service).

*Air traffic services airspaces.* Airspaces of defined dimensions, alphabetically designated, within which specific types of flights may operate and for which air traffic services and rules of operation are specified.

Note. — ATS airspaces are classified as Class A to G as shown in Annex 11, Appendix 4. Air traffic services reporting office. A unit established for the purpose of receiving reports concerning air traffic services and flight plans submitted before departure.

Note.— An air traffic services reporting office may be established as a separate unit or combined with an existing unit, such as another air traffic services unit, or a unit of the aeronautical information service.

*Air traffic services unit.* A generic term meaning variously, air traffic control unit, flight information centre or air traffic services reporting office.

Airway. A control area or portion thereof established in the form of a corridor.

ALERFA. The code word used to designate an alert phase.

*Alerting service.* A service provided to notify appropriate organizations regarding aircraft in need of search and rescue aid, and assist such organizations as required.

*Alert phase.* A situation wherein apprehension exists as to the safety of an aircraft and its occupants.

**Allocation, allocate.** Distribution of frequencies, SSR codes, etc. to a State, unit or service. Distribution of 24-bit aircraft addresses to a State or common mark registering authority.

*Alphanumeric characters (alphanumerics).* A collective term for letters and figures (digits). *Alternate aerodrome.* An aerodrome to which an aircraft may proceed when it becomes either impossible or inadvisable to proceed to or to land at the aerodrome of intended landing. Alternate aerodromes include the following:

*Take-off alternate*. An alternate aerodrome at which an aircraft can land should this become necessary shortly after take-off and it is not possible to use the aerodrome of departure. *En-route alternate*. An aerodrome at which an aircraft would be able to land after experiencing an abnormal or emergency condition while en route.

*Destination alternate*. An alternate aerodrome to which an aircraft may proceed should it become either impossible or inadvisable to land at the aerodrome of intended landing. *Note.*— *The aerodrome from which a flight departs may also be an en-route or a destination alternate aerodrome for that flight.*  *Altitude.* The vertical distance of a level, a point or an object considered as a point, measured from mean sea level (MSL).

*Approach control service.* Air traffic control service for arriving or departing controlled flights. *Approach control unit.* A unit established to provide air traffic control service to controlled flights arriving at, or departing from, one or more aerodromes.

*Approach sequence.* The order in which two or more aircraft are cleared to approach to land at the aerodrome.

*Appropriate ATS authority.* The relevant authority designated by the State responsible for providing air traffic services in the airspace concerned.

### Appropriate authority.

a) Regarding flight over the high seas: The relevant authority of the State of Registry.

b) Regarding flight other than over the high seas: The relevant authority of the State having sovereignty over the territory being overflown.

*Apron.* A defined area, on a land aerodrome, intended to accommodate aircraft for purposes of loading or unloading passengers, mail or cargo, fuelling, parking or maintenance.

*Area control centre (ACC).* A unit established to provide air traffic control service to controlled flights in control areas under its jurisdiction.

Area control service. Air traffic control service for controlled flights in control areas.

**Area navigation (RNAV).** A method of navigation which permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

*Area navigation route.* An ATS route established for the use of aircraft capable of employing area navigation.

ATIS. The symbol used to designate automatic terminal information service.

**ATS route.** A specified route designed for channelling the flow of traffic as necessary for the provision of air traffic services.

Note 1.— The term "ATS route" is used to mean variously, airway, advisory route, controlled or uncontrolled route, arrival or departure route, etc.

Note 2.— An ATS route is defined by route specifications which include an ATS route designator, the track to or from significant points (waypoints), distance between significant points, reporting requirements and, as determined by the appropriate ATS authority, the lowest safe altitude.

**ATS surveillance service.** A term used to indicate a service provided directly by means of an ATS surveillance system.

**ATS surveillance system.** A generic term meaning variously, ADS-B, PSR, SSR or any comparable ground-based system that enables the identification of aircraft.

Note.— A comparable ground-based system is one that has been demonstrated, by comparative assessment or other methodology, to have a level of safety and performance equal to or better than monopulse SSR.

**Automatic dependent surveillance** — **broadcast (ADS-B).** A means by which aircraft, aerodrome vehicles and other objects can automatically transmit and/or receive data such as identification, position and additional data, as appropriate, in a broadcast mode via a data link.

Automatic dependent surveillance — contract (ADS-C). A means by which the terms of an ADS-C agreement will be exchanged between the ground system and the aircraft, via a data link, specifying under what conditions ADS-C reports would be initiated, and what data would be contained in the reports.

Note.— The abbreviated term "ADS contract" is commonly used to refer to ADS event contract, ADS demand contract, ADS periodic contract or an emergency mode.

*Automatic terminal information service (ATIS).* The automatic provision of current, routine information to arriving and departing aircraft throughout 24 hours or a specified portion thereof:

*Data link-automatic terminal information service (D-ATIS).* The provision of ATIS via data link. *Voice-automatic terminal information service (Voice-ATIS).* The provision of ATIS by means of continuous and repetitive voice broadcasts.

*Base turn.* A turn executed by the aircraft during the initial approach between the end of the outbound track and the beginning of the intermediate or final approach track. The tracks are not reciprocal.

Note.— Base turns may be designated as being made either in level flight or while descending, according to the circumstances of each individual procedure.

**Blind transmission.** A transmission from one station to another station in circumstances where two-way communication cannot be established but where it is believed that the called station is able to receive the transmission.

*Broadcast.* A transmission of information relating to air navigation that is not addressed to a specific station or stations.

*Ceiling.* The height above the ground or water of the base of the lowest layer of cloud below 6 000 m (20 000 ft) covering more than half the sky.

*Clearance limit.* The point to which an aircraft is granted an air traffic control clearance. *Code (SSR).* The number assigned to a particular multiple pulse reply signal transmitted by a transponder in Mode A or Mode C.

*Common point.* A point on the surface of the earth common to the paths of two aircraft, used as a basis for describing longitudinal separation minima (e.g. significant point, waypoint, navigation aid, fix).

*Note.*— *Common point is not used for operational purposes or in pilot-controller communications.* 

*Control area.* A controlled airspace extending upwards from a specified limit above the earth. *Controlled aerodrome.* An aerodrome at which air traffic control service is provided to aerodrome traffic.

*Note.*— *The term "controlled aerodrome" indicates that air traffic control service is provided to aerodrome traffic but does not necessarily imply that a control zone exists.* 

*Controlled airspace.* An airspace of defined dimensions within which air traffic control service is provided in accordance with the airspace classification.

Note. — Controlled airspace is a generic term which covers ATS airspace Classes A, B, C, D and E as described in Annex 11, 2.6.

*Controlled flight.* Any flight which is subject to an air traffic control clearance.

*Controller-pilot data link communications (CPDLC).* A means of communication between controller and pilot, using data link for ATC communications.

*Control zone.* A controlled airspace extending upwards from the surface of the earth to a specified upper limit.

*Cruise climb.* An aeroplane cruising technique resulting in a net increase in altitude as the aeroplane mass decreases.

*Cruising level.* A level maintained during a significant portion of a flight.

*Current data authority.* The designated ground system through which a CPDLC dialogue between a pilot and a controller currently responsible for the flight is permitted to take place. *Current flight plan (CPL).* The flight plan, including changes, if any, brought about by subsequent clearances.

Note.— When the word "message" is used as a suffix to this term, it denotes the content and format of the current flight plan data sent from one unit to another.

**Data convention.** An agreed set of rules governing the manner or sequence in which a set of data may be combined into a meaningful communication.

*Data link initiation capability (DLIC).* A data link application that provides the ability to exchange addresses, names and version numbers necessary to initiate data link applications.

*Data link-automatic terminal information service (D-ATIS)*. The provision of ATIS via data link. *Voice-automatic terminal information service (Voice-ATIS)*. The provision of ATIS by means of continuous and repetitive voice broadcasts.

Data processing. A systematic sequence of operations performed on data.

Note.— Examples of operations are the merging, sorting, computing or any other transformation or rearrangement with the object of extracting or revising information, or of altering the representation of information.

**Decision altitude (DA) or decision height (DH).** A specified altitude or height in the precision approach or approach with vertical guidance at which a missed approach must be initiated if the required visual reference to continue the approach has not been established.

Note 1.— Decision altitude (DA) is referenced to mean sea level and decision height (DH) is referenced to the threshold elevation.

Note 2.— The required visual reference means that section of the visual aids or of the approach area which should have been in view for sufficient time for the pilot to have made an assessment

of the aircraft position and rate of change of position, in relation to the desired flight path. In Category III operations with a decision height the required visual reference is that specified for the particular procedure and operation.

Note 3.— For convenience where both expressions are used they may be written in the form "decision altitude/ height" and abbreviated "DA/H".

**Dependent parallel approaches.** Simultaneous approaches to parallel or near-parallel instrument runways where radar separation minima between aircraft on adjacent extended runway centre lines are prescribed.

**DETRESFA.** The code word used to designate a distress phase.

Discrete code. A four-digit SSR code with the last two digits not being "00".

**Distress phase.** A situation wherein there is reasonable certainty that an aircraft and its occupants are threatened by grave and imminent danger or require immediate assistance. **Downstream data authority.** A designated ground system, different from the current data authority through which the pilot can contact an appropriate ATC unit for the purposes of receiving a downstream clearance.

*Elevation.* The vertical distance of a point or a level, on or affixed to the surface of the earth, measured from mean sea level.

*Emergency phase.* A generic term meaning, as the case may be, uncertainty phase, alert phase or distress phase.

*Estimated elapsed time.* The estimated time required to proceed from one significant point to another.

*Estimated off-block time.* The estimated time at which the aircraft will commence movement associated with departure.

*Estimated time of arrival.* For IFR flights, the time at which it is estimated that the aircraft will arrive over that designated point, defined by reference to navigation aids, from which it is intended that an instrument approach procedure will be commenced, or, if no navigation aid is associated with the aerodrome, the time at which the aircraft will arrive over the aerodrome. For VFR flights, the time at which it is estimated that the aircraft will arrive over the aerodrome. *Expected approach time.* The time at which ATC expects that an arriving aircraft, following a

delay, will leave the holding fix to complete its approach for a landing.

*Note.*— *The actual time of leaving the holding fix will depend upon the approach clearance. Filed flight plan (FPL).* The flight plan as filed with an ATS unit by the pilot or a designated representative, without any subsequent changes.

Note.— When the word "message" is used as a suffix to this term, it denotes the content and format of the filed flight plan data as transmitted.

*Final approach.* That part of an instrument approach procedure which commences at the specified final approach fix or point, or where such a fix or point is not specified, a) at the end of the last procedure turn, base turn or inbound turn of a racetrack procedure, if specified; or b) at

the point of interception of the last track specified in the approach procedure; and ends at a point in the vicinity of an aerodrome from which:

1) a landing can be made; or

2) a missed approach procedure is initiated.

*Flight crew member*. A licensed crew member charged with duties essential to the operation of an aircraft during a flight duty period.

*Flight information centre.* A unit established to provide flight information service and alerting service.

*Flight information region (FIR).* An airspace of defined dimensions within which flight information service and alerting service are provided.

*Flight information service.* A service provided for the purpose of giving advice and information useful for the safe and efficient conduct of flights.

*Flight level.* A surface of constant atmospheric pressure which is related to a specific pressure datum, 1 013.2 hectopascals (hPa), and is separated from other such surfaces by specific pressure intervals.

Note 1.— A pressure type altimeter calibrated in accordance with the Standard Atmosphere: a) when set to a QNH altimeter setting, will indicate altitude;

*b)* when set to QFE altimeter setting, will indicate height above the QFE reference datum; *c)* when set to a pressure of 1 013.2 hPa, may be used to indicate flight levels.

Note 2.— The terms "height" and "altitude", used in Note 1 above, indicate altimetric rather than geometric heights and altitudes.

*Flight path monitoring.* The use of ATS surveillance systems for the purpose of providing aircraft with information and advice relative to significant deviations from nominal flight path, including deviations from the terms of their air traffic control clearances.

Note.— Some applications may require a specific technology, e.g. radar, to support the function of flight path monitoring.

*Flight plan.* Specified information provided to air traffic services units, relative to an intended flight or portion of a flight of an aircraft.

Note. — Specifications for flight plans are contained in Annex 2. A Model Flight Plan Form is contained in Appendix 2 to this document.

Flight visibility. The visibility forward from the cockpit of an aircraft in flight.

*Forecast.* A statement of expected meteorological conditions for a specified time or period, and for a specified area or portion of airspace.

*Glide path.* A descent profile determined for vertical guidance during a final approach.

*Ground effect.* A condition of improved performance (lift) due to the interference of the surface with the airflow pattern of the rotor system when a helicopter or other VTOL aircraft is operating near the ground.

*Note.*—*Rotor efficiency is increased by ground effect to a height of about one rotor diameter for most helicopters.* 

*Ground visibility.* The visibility at an aerodrome, as reported by an accredited observer or by automatic systems.

*Heading.* The direction in which the longitudinal axis of an aircraft is pointed, usually expressed in degrees from North (true, magnetic, compass or grid).

*Height.* The vertical distance of a level, a point or an object considered as a point, measured from a specified datum.

Holding fix. A geographical location that serves as a reference for a holding procedure.

*Holding procedure.* A predetermined manoeuvre which keeps an aircraft within a specified airspace while awaiting further clearance.

*Hot spot.* A location on an aerodrome movement area with a history or potential risk of collision or runway incursion, and where heightened attention by pilots/drivers is necessary.

*Human performance*. Human capabilities and limitations which have an impact on the safety and efficiency of aeronautical operations.

*Identification.* The situation which exists when the position indication of a particular aircraft is seen on a situation display and positively identified.

IFR. The symbol used to designate the instrument flight rules.

IFR flight. A flight conducted in accordance with the instrument flight rules.

*IMC.* The symbol used to designate instrument meteorological conditions.

**INCERFA.** The code word used to designate an uncertainty phase.

*Incident*. An occurrence, other than an accident, associated with the operation of an aircraft which affects or could affect the safety of operation.

*Note.*— *The type of incidents which are of main interest to the International Civil Aviation Organization for accident prevention studies can be found at http://www.icao.int/anb/aig.* 

*Independent parallel approaches.* Simultaneous approaches to parallel or near-parallel instrument runways where radar separation minima between aircraft on adjacent extended runway centre lines are not prescribed.

*Independent parallel departures.* Simultaneous departures from parallel or near-parallel instrument runways.

*Initial approach segment.* That segment of an instrument approach procedure between the initial approach fix and the intermediate approach fix or, where applicable, the final approach fix or point.

*Instrument approach procedure (IAP).* A series of predetermined manoeuvres by reference to flight instruments with specified protection from obstacles from the initial approach fix, or where applicable, from the beginning of a defined arrival route to a point from which a landing can be completed and thereafter, if a landing is not completed, to a position at which holding or en-route obstacle clearance criteria apply. Instrument approach procedures are classified as

follows:

*Non-precision approach (NPA) procedure.* An instrument approach procedure which utilizes lateral guidance but does not utilize vertical guidance.

**Approach procedure with vertical guidance (APV)**. An instrument procedure which utilizes lateral and vertical guidance but does not meet the requirements established for precision approach and landing operations.

*Precision approach (PA) procedure*. An instrument approach procedure using precision lateral and vertical guidance with minima as determined by the category of operation.

*Note.*— *Lateral and vertical guidance refers to the guidance provided either by:* 

a) a ground-based navigation aid; or b) computer-generated navigation data.

*Instrument meteorological conditions (IMC).* Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling, less than the minima specified for visual meteorological conditions.

Note 1.— The specified minima for visual meteorological conditions are contained in Chapter 3 of Annex 2.

Note 2.— In a control zone, a VFR flight may proceed under instrument meteorological conditions if and as authorized by air traffic control.

*Landing area.* That part of a movement area intended for the landing or take-off of aircraft. *Level.* A generic term relating to the vertical position of an aircraft in flight and meaning variously, height, altitude or flight level.

*Location indicator.* A four-letter code group formulated in accordance with rules prescribed by ICAO and assigned to the location of an aeronautical fixed station.

*Manoeuvring area.* That part of an aerodrome to be used for the take-off, landing and taxiing of aircraft, excluding aprons.

*Meteorological information.* Meteorological report, analysis, forecast, and any other statement relating to existing or expected meteorological conditions.

*Meteorological office.* An office designated to provide meteorological service for international air navigation.

*Meteorological report.* A statement of observed meteorological conditions related to a specified time and location.

*Minimum fuel.* The term used to describe a situation in which an aircraft's fuel supply has reached a state where little or no delay can be accepted.

Note.— This is not an emergency situation but merely indicates that an emergency situation is possible, should any undue delay occur.

*Missed approach procedure.* The procedure to be followed if the approach cannot be continued.

*Mode (SSR).* The conventional identifier related to specific functions of the interrogation signals transmitted by an SSR interrogator. There are four modes specified in Annex 10: A, C, S and intermode.

*Movement area.* That part of an aerodrome to be used for the take-off, landing and taxiing of aircraft, consisting of the manoeuvring area and the apron(s).

*Near-parallel runways.* Non-intersecting runways whose extended centre lines have an angle of convergence/divergence of 15 degrees or less.

*Normal operating zone (NOZ).* Airspace of defined dimensions extending to either side of an ILS localizer course and/or MLS final approach track. Only the inner half of the normal operating zone is taken into account in independent parallel approaches.

**NOTAM.** A notice distributed by means of telecommunication containing information concerning the establishment, condition or change in any aeronautical facility, service, procedure or hazard, the timely knowledge of which is essential to personnel concerned with flight operations.

**No transgression zone (NTZ).** In the context of independent parallel approaches, a corridor of airspace of defined dimensions located centrally between the two extended runway centre lines, where a penetration by an aircraft requires a controller intervention to manoeuvre any threatened aircraft on the adjacent approach.

**Obstacle clearance altitude (OCA) or obstacle clearance height (OCH).** The lowest altitude or the lowest height above the elevation of the relevant runway threshold or the aerodrome elevation as applicable, used in establishing compliance with appropriate obstacle clearance criteria.

Note 1.— Obstacle clearance altitude is referenced to mean sea level and obstacle clearance height is referenced to the threshold elevation or in the case of non-precision approaches to the aerodrome elevation or the threshold elevation if that is more than 2 m (7 ft) below the aerodrome elevation. An obstacle clearance height for a circling approach is referenced to the aerodrome elevation.

Note 2.— For convenience when both expressions are used they may be written in the form "obstacle clearance altitude/height" and abbreviated "OCA/H".

**Operational control.** The exercise of authority over the initiation, continuation, diversion or termination of a flight in the interest of the safety of the aircraft and the regularity and efficiency of the flight.

**Operator.** A person, organization or enterprise engaged in or offering to engage in an aircraft operation.

*Pilot-in-command.* The pilot designated by the operator, or in the case of general aviation, the owner, as being in command and charged with the safe conduct of a flight.

**Precision approach radar (PAR).** Primary radar equipment used to determine the position of an aircraft during final approach, in terms of lateral and vertical deviations relative to a nominal

approach path, and in range relative to touchdown.

Note.— Precision approach radars are designated to enable pilots of aircraft to be given guidance by radiocommunication during the final stages of the approach to land.

**Pressure-altitude.** An atmospheric pressure expressed in terms of altitude which corresponds to that pressure in the Standard Atmosphere.\* \* As defined in Annex 8.

Primary radar. A radar system which uses reflected radio signals.

*Primary surveillance radar (PSR).* A surveillance radar system which uses reflected radio signals. *Procedural control.* Term used to indicate that information derived from an ATS surveillance system is not required for the provision of air traffic control service.

**Procedural separation.** The separation used when providing procedural control.

**Procedure turn.** A manoeuvre in which a turn is made away from a designated track followed by a turn in the opposite direction to permit the aircraft to intercept and proceed along the reciprocal of the designated track.

*Note 1.— Procedure turns are designated "left" or "right" according to the direction of the initial turn.* 

Note 2.— Procedure turns may be designated as being made either in level flight or while descending, according to the circumstances of each individual procedure.

*Profile.* The orthogonal projection of a flight path or portion thereof on the vertical surface containing the nominal track.

**PSR blip.** The visual indication, in non-symbolic form, on a situation display of the position of an aircraft obtained by primary radar.

*Radar.* A radio detection device which provides information on range, azimuth and/or elevation of objects.

*Radar approach.* An approach in which the final approach phase is executed under the direction of a controller using radar.

*Radar clutter.* The visual indication on a situation display of unwanted signals.

*Radar contact.* The situation which exists when the radar position of a particular aircraft is seen and identified on a situation display.

*Radar identification*. The situation which exists when the radar position of a particular aircraft is seen on a radar display and positively identified by the air traffic controller.

Note. — The specified minima are contained in Annex 2.

*Radar separation.* The separation used when aircraft position information is derived from radar sources.

*Receiving unit/controller.* Air traffic services unit/air traffic controller to which a message is sent.

**Repetitive flight plan (RPL).** A flight plan related to a series of frequently recurring, regularly operated individual flights with identical basic features, submitted by an operator for retention and repetitive use by ATS units.

**Reporting point.** A specified geographical location in relation to which the position of an aircraft can be reported.

*Required communication performance (RCP).* A statement of the performance requirements for operational communication in support of specific ATM functions.

**Required navigation performance (RNP).** A statement of the navigation performance necessary for operation within a defined airspace.

*Note.*— *Navigation performance and requirements are defined for a particular RNP type and/or application.* 

**Rescue coordination centre.** A unit responsible for promoting efficient organization of search and rescue services and for coordinating the conduct of search and rescue operations within a search and rescue region.

*Rescue unit.* A unit composed of trained personnel and provided with equipment suitable for the expeditious conduct of search and rescue.

*Runway*. A defined rectangular area on a land aerodrome prepared for the landing and take-off of aircraft.

**Runway-holding position.** A designated position intended to protect a runway, an obstacle limitation surface, or an ILS/MLS critical/sensitive area at which taxiing aircraft and vehicles shall stop and hold, unless otherwise authorized by the aerodrome control tower.

Note.— In radiotelephony phraseologies, the expression "holding point" is used to designate the runway-holding position.

**Runway incursion.** Any occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft.

**Runway visual range (RVR).** The range over which the pilot of an aircraft on the centre line of a runway can see the runway surface markings or the lights delineating the runway or identifying its centre line.

*Safety management system (SMS).* A systematic approach to managing safety, including the necessary organizational structures, accountabilities, policies and procedures.

*Secondary radar.* A radar system wherein a radio signal transmitted from the radar station initiates the transmission of a radio signal from another station.

*Secondary surveillance radar (SSR).* A surveillance radar system which uses transmitters/receivers (interrogators) and transponders.

*Segregated parallel operations.* Simultaneous operations on parallel or near-parallel instrument runways in which one runway is used exclusively for approaches and the other runway is used exclusively for departures.

*Sending unit/controller.* Air traffic services unit/air traffic controller transmitting a message. *Note.*— *See definition of "receiving unit/controller".* 

*Shoreline.* A line following the general contour of the shore, except that in cases of inlets or bays less than 30 nautical miles in width, the line shall pass directly across the inlet or bay to intersect the general contour on the opposite side.

*SIGMET information.* Information issued by a meteorological watch office concerning the occurrence or expected occurrence of specified en-route weather phenomena which may affect the safety of aircraft operations.

*Significant point.* A specified geographical location used in defining an ATS route or the flight path of an aircraft and for other navigation and ATS purposes.

*Situation display.* An electronic display depicting the position and movement of aircraft and other information as required.

*Slush.* Water-saturated snow which with a heel-and-toe slap-down motion against the ground will be displaced with a splatter; specific gravity: 0.5 up to 0.8.

Note.— Combinations of ice, snow and/or standing water may, especially when rain, rain and snow, or snow is falling, produce substances with specific gravities in excess of 0.8. These substances, due to their high water/ice content, will have a transparent rather than a cloudy appearance and, at the higher specific gravities, will be readily distinguishable from slush. **Snow (on the ground).** 

a) *Dry snow.* Snow which can be blown if loose or, if compacted by hand, will fall apart upon release; specific gravity: up to but not including 0.35.

b) *Wet snow.* Snow which, if compacted by hand, will stick together and tend to or form a snowball; specific gravity: 0.35 up to but not including 0.5.

c) *Compacted snow.* Snow which has been compressed into a solid mass that resists further compression and will hold together or break up into lumps if picked up; specific gravity: 0.5 and over.

*Special VFR flight.* A VFR flight cleared by air traffic control to operate within a control zone in meteorological conditions below VMC.

*SSR response.* The visual indication, in non-symbolic form, on a situation display, of a response from an SSR transponder in reply to an interrogation.

**Standard instrument arrival (STAR).** A designated instrument flight rule (IFR) arrival route linking a significant point, normally on an ATS route, with a point from which a published instrument approach procedure can be commenced.

**Standard instrument departure (SID).** A designated instrument flight rule (IFR) departure route linking the aerodrome or a specified runway of the aerodrome with a specified significant point, normally on a designated ATS route, at which the en-route phase of a flight commences.

**Stopway.** A defined rectangular area on the ground at the end of take-off run available prepared as a suitable area in which an aircraft can be stopped in the case of an abandoned take-off.

*Surveillance radar.* Radar equipment used to determine the position of an aircraft in range and azimuth.

*Taxiing.* Movement of an aircraft on the surface of an aerodrome under its own power, excluding take-off and landing.

*Taxiway.* A defined path on a land aerodrome established for the taxiing of aircraft and intended to provide a link between one part of the aerodrome and another, including:

a) *Aircraft stand taxilane*. A portion of an apron designated as a taxiway and intended to provide access to aircraft stands only.

b) *Apron taxiway*. A portion of a taxiway system located on an apron and intended to provide a through taxi route across the apron.

c) *Rapid exit taxiway*. A taxiway connected to a runway at an acute angle and designed to allow landing aeroplanes to turn off at higher speeds than are achieved on other exit taxiways thereby minimizing runway occupancy times.

*Terminal control area (TMA).* A control area normally established at the confluence of ATS routes in the vicinity of one or more major aerodromes.

*Threshold.* The beginning of that portion of the runway usable for landing.

**Total estimated elapsed time.** For IFR flights, the estimated time required from take-off to arrive over that designated point, defined by reference to navigation aids, from which it is intended that an instrument approach procedure will be commenced, or, if no navigation aid is associated with the destination aerodrome, to arrive over the destination aerodrome. For VFR flights, the estimated time required from take-off to arrive over the destination aerodrome. **Touchdown.** The point where the nominal glide path intercepts the runway.

Note.— "Touchdown" as defined above is only a datum and is not necessarily the actual point at which the aircraft will touch the runway.

*Track.* The projection on the earth's surface of the path of an aircraft, the direction of which path at any point is usually expressed in degrees from North (true, magnetic or grid).

*Traffic avoidance advice.* Advice provided by an air traffic services unit specifying manoeuvres to assist a pilot to avoid a collision.

**Traffic information.** Information issued by an air traffic services unit to alert a pilot to other known or observed air traffic which may be in proximity to the position or intended route of flight and to help the pilot avoid a collision.

**Transfer of control point.** A defined point located along the flight path of an aircraft, at which the responsibility for providing air traffic control service to the aircraft is transferred from one control unit or control position to the next.

**Transferring unit/controller.** Air traffic control unit/air traffic controller in the process of transferring the responsibility for providing air traffic control service to an aircraft to the next air traffic control unit/air traffic controller along the route of flight.

*Transition altitude.* The altitude at or below which the vertical position of an aircraft is controlled by reference to altitudes.

*Transition layer.* The airspace between the transition altitude and the transition level.

Transition level. The lowest flight level available for use above the transition altitude.

*Uncertainty phase.* A situation wherein uncertainty exists as to the safety of an aircraft and its occupants.

**Unmanned free balloon.** A non-power-driven, unmanned, lighter-than-air aircraft in free flight. Note. — Unmanned free balloons are classified as heavy, medium or light in accordance with specifications contained in Annex 2, Appendix 4.

*Vectoring.* Provision of navigational guidance to aircraft in the form of specific headings, based on the use of an ATS surveillance system.

**VFR.** The symbol used to designate the visual flight rules.

VFR flight. A flight conducted in accordance with the visual flight rules.

*Visibility.* Visibility for aeronautical purposes is the greater of:

a) the greatest distance at which a black object of suitable dimensions, situated near the ground, can be seen and recognized when observed against a bright background;

b) the greatest distance at which lights in the vicinity of 1 000 candelas can be seen and identified against an unlit background.

Note 1.— The two distances have different values in air of a given extinction coefficient, and the latter b) varies with the background illumination. The former a) is represented by the meteorological optical range (MOR).

Note 2.— The definition applies to the observations of visibility in local routine and special reports, to the observations of prevailing and minimum visibility reported in METAR and SPECI and to the observations of ground visibility.

*Visual approach.* An approach by an IFR flight when either part or all of an instrument approach procedure is not completed and the approach is executed in visual reference to terrain.

*Visual meteorological conditions.* Meteorological conditions expressed in terms of visibility, distance from cloud, and ceiling, equal to or better than specified minima.

Note. — The specified minima are contained in Annex 2, Chapter 4.

VMC. The symbol used to designate visual meteorological conditions.

*Waypoint.* A specified geographical location used to define an area navigation route or the flight path of an aircraft employing area navigation. Waypoints are identified as either:

*Fly-by waypoint*. A waypoint which requires turn anticipation to allow tangential interception of the next segment of a route or procedure, or

*Flyover waypoint*. A waypoint at which a turn is initiated in order to join the next segment of a route or procedure.