Analysis of Queues and Level of Service on Urban Roads Using Machine Learning and NoSQL Database

(Master thesis work)

Leo Tišljarić, Tomislav Erdelić, Tonči Carić

University of Zagreb, Faculty of Transport and Traffic Sciences, www.fpz.unizg.hr, http://www.fpz.unizg.hr/zits tisljaricleo@gmail.com, terdelic@fpz.hr, tcaric@fpz.hr

Motivation

Traffic congestions appear mostly in urban areas, at intersections. Therefore, it is important to have a measure to quantify intersection performance, especially during rush hours. Usually, intersection's Level of Service (LoS) is used as a performance measure in project design.

Raw GPS data are used to calculate characteristic parameters for every intersection:

- Speed (v)•
- Queue length (L_a)
- Level of Service (*LoS*)

Characteristic vector [v, L_q , LoS] is formed for every intersection approach and used as input to the machine learning algorithm.

sert crossing Approach view	Machine Learning	
Time interval:	Elbow method:	Silhouette method:
16:30		k= 3; ss= 0.49803431924098285
10.50	Elbow method	
<u>K-means:</u>	56 - X	k= 4; ss= 0.4494716956979741
	48 -	k= 5; ss= 0.4791831149435604
	40 -	k= 6; ss= 0.4999361835076874
	je 32 -	k= 7; ss= 0.50318386985441
	· [[] ₂₄ -	k= 8; ss= 0.481172948530466
	16 -	k= 9; ss= 0.4461664648790968
Bup methods Show	8-	

Weekend profile

Future work

- Using larger data set; widening research to all larger intersections in the City of Zagreb
- More granular approach; detecting intersection approaches with anomalies
- Ground truth values
- Real-time data and adaptation to computing intersection performance

University of Zagreb, Faculty of Transport and Traffic Sciences

3rd Summer School on Data Science (SSDS 2018), 24th-28th September, 2018 Split, Croatia