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Global localization refers to the problem of
determining the pose of a mobile robot under global
uncertainty. One solution to this problem is the
usage of histograms as part of a topological map.
The algorithm introduced here is based on the
inferacting multiple model and exploits a soft gating
of the problem to reduce the computational
requirements of presented approach. This
localization algorithm consists of a position
estimation and orientation estimation part. The
position part is based on a xy histogram scan
matching procedure, where xy histograms are
extracted directly from local occupancy grid maps.
The orientation part is based on the proposed
obstacle vector transform combined with polar
histograms. Introduced algorithm is tested using a
Pioneer 2DX mobile robot simulator.

I. Introduction

In most applications, a mobile robot must be able to
determine its pose (position and orientation) in the
environment using its own sensors only. Pose
awareness is very important to all mobile robot
applications. Localization techniques can be divided
into local and global localization techniques. Global
localization is usually done by observing a multitude of
different pose hypotheses, usually doesn’t require
initial pose information, and it's generally able to
recaver from arbitrary pose errors [1]. Keeping track of
all the possible association hypotheses over time, as in
the case for the multiple hypotheses tracker (MHT) [2]
leads to hardness in real-time problem, since the
number of associated hypotheses grows with the
mobile robot environment dimension. So, methods are
required to reduce the computational complexity.

The quality and precision of autonomous mobile robot
systems is critically dependent on the appropriate

ERIC2005,Portoroz, B: 173-176

choices of both: data association and state estimation
algorithms.

The first problem refers to the selection of a good filter
that copes with most of the situations in the application
where it would be used. There are many data
association techniques used in multiple targel tracking
(MTT) systems ranging from the simpler nearest-
neighbor approaches to the very complex multiple
hypothesis trackers [2]. The disadvantages of most of
these methods are their computational requirements.
One of the data association problem approach'is also
within the context of particle filtering. A method that
combines the particle filtering technique with the
philosophy behind the probabilistic data association .
filter (PDAF) [3] is presented in this approach. In order
to minimize the computational burden of the particle
filter algorithm we reduce the number of particles. This
is done by rejection of particles with sufficiently small
likelihood values, since they are not likely to be re-
sampled using a soft-gating (SG) method [4]. The basic
idea of SG is to; starting with a set of samples
approximately distributed according 1o the best
hypothesis from initialisation phase, generate new
particles, which depend on the old state (clutter
measurements) and new measurements. The update
step is repeated until a feasible likelihood value is
received.

Among the estimation algorithms, the interacting
multiple model (IMM) estimator is the best-known
single-scan positional algorithm and is most widely
used for the purpose of tracking maneuvering targets
[5]. The IMM approach computes the state estimate
that accounts for each possible current model using a
suitable mixing of the previous model-conditioned
estimates depending on the current model [6]. Amongst
the available multiple model techniques, the IMM is
the best cost-effective implementation and for this
reason chosen for this mobile robot localization
approach.




The mobile robot has to cope with two types of sensor
noise in order to map an environment: perception noise
and odometry noise. The most common solution to
minimize the influence of odometry noise is to rely on
dead reckoning methods (odometry) only for a short
period of time and then to apply additional sensors to
update/correct the mobile robot pose. Often used
sensors are the sonar, laser range finder, cameras,
compass, gyro, etc. The compass as heading sensor is
of particular importance to mobile robot localization
because it can improve the orientation estimation
accuracy of odometry. Orientation estimation accuracy
greatly influences the position estimation accuracy and
is crucial for reliable mobile robot localization.
lHowever, an electronic compass is sensitive to
magnetic noise that comes from ferromagnetic objects
or structures in the robot environment, from the mobile
robot body and the noise produced by its drive system.
So itis good to replace it with sonar sensors and extend
the up to this point implemented histogram matching
procedure [6], which can only correct the estimated
mobile robot position, with a polar histogram that can
correct the estimated mobile robot orientation. The
compass is used to ensure that the xy histograms are
always constructed with the same mobile robot
orientation.

Histogram based matching procedures have many
attractive features. For example, histograms provide a
compact representation of a scan and thus require less
memory space, which also makes the comparison of
two histograms much faster than the comparison of two
scans. Polar histograms are used in vision systems [8]
and vector histograms for obstacle avoidance [9]. In
our localization approach we extend their use for
mobile robot orientation estimation using an obstacle
veetor transform (OVT). The idea is to first detect
obstacles in the nearby mobile robot environment,
presenl them using obstacle vectors and then to
construct the polar histogram using only local sonar
range readings.

2. Position tracking

In an occupancy grid map, a regular grid represents the
mobile robot environment. Each cell’s value is based
on the likelihood of it being occupied. The certainty
value is based only on sensor readings. Each
occupancy grid cell represents an area of 10 [em] x 10
[em] and is considered as being in one of three possible
states: occupied, empty and unknown. The state
depends on the corresponding probability of occupancy
for that cell.

To begin the global localization process, the robot
takes a new sonar scan at its currenl pose and
constructs a local occupancy grid. The scans are
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converted to three types of histograms before
matching: x, y and angle histograms. Both x and y
histograms are consisted of three one-dimensional
arrays, which are obtained by adding up the total
number of occupied, empty and unknown cells in each
of the 60 rows or columns respectively (x or y
histogram). An example of obtained x-histograms is
presented in Fig, 1.
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Figure 1. Example of obtained x-histograms.

Matching scores of stored histogram (nodes of hybrid
map) and recognition-translated histogram of current
place are calculated for x- and y-histograms as [7]:
M(H, . H)=SCALE*

Z[min(oj".o;)+ min (£ !, £, )+ min (0! '.U;)]“)

: i
where Oj, Ej, Uj refer to the number of occupied,
empty and unknown cells, contained in the j-th element
of histogram / and SCALE scaling parameter.

Far each of these hypotheses, the likelihood of sensor
model L(S|h,) is calculated as the strength of the match
between the current and stored histograms for. each
place hypothesis 4;: ;

L(S|h)ec M x M, (2)
where are M.-matching score of x-histogram, M,-
matching score of y-histogram, M, and M, are the
best match scores, produced by the best matching
alignment between histogram of chosen hypothesis h,
and translated histogram for the current place.

3. Polar Histograms

Polar histograms are constructed using straight line
originating from a focus (Fig. 2.). In our case the focus
is the mobile robot and straight lines are sonar range
measurements. Angles between the vector obstacle
segments and positive x-axis weighted with obstacle
vector length form then the polar histogram (Fig. 3.).

3.1 Obstacle Vector Transform

A one-dimensional polar histogram is constructed
around the robot’s momentary location, using the
OVT, which maps the local occupancy grid onto polar
histogram. The histogram comprises n angular sectors
‘of width @ = 1°, Each sector 0<a <360, holding a
value of nearest obstacle distance, represents the polar




obstacle vector in the direction that corresponds to
sector k. The content of only active cells in the local
occupancy grid, which are occupied, is now treated as
an obstacle vector, the direction of which is determined
by the direction f§ from the cell to the Mobile Robot
Centre Point (MRCP).

Vi =Y
B, =arct nn[)f'-—-l-v] . 3
A\ . -‘-“

The obstacle distance vector is as:

dy = (("'. _“'«)2 *'(.", =] J’n)l)lz . (1)

where d;, distance between occupied cell (i,j) and the
MRCP in direction B, (x,y,) and (xo,yu) are coordinates
of obstacle cell (i) and MRCP respectively.

The minimization of the obstacle distance vector
(MOD) in the direction, that corresponds to sector k
follows:

i {{J) = arg‘:nin [(d" )‘ } 3 )

Fig. 2. shows a typical obstacle setup in our research

environment (overlaying part of the local occupancy
grid).

Figure 2. Part of our experiment environment.

The polar histogram corresponding to the momentary
position of the autonomous mobile robot is shown in
Fig. 3. The peaks A, B, C. D, E, and [ in the polar
histogram result from obstacle clusters A, B, C, D, E,
and I,
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Figure 3. OVT is represented in polar histogram
relative to the robot’s position at MRCP.

3.2 Polar Histograms comparison
Obstacle vectors obtained by the OVT with sector

direction [}, are used to calculate the polar histogram.
To remove small obstacle vector segments from polar
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histogram, each vector length is compared 1o a
threshold. Threshold value is calculated for every
sensor scan separately in the form of a mean value.
Any obstacle vector segment in polar histogram, whose
length is less than threshold for certain scan, is
remaved. In this way, comparing ol polar histograms
give better matching results,

The analysis of measurements for comparing polar
histograms is important, since the “intersection-
measurement’’ gives different results for matching
histograms [10]. In our approach, the calculation Yoir

is used.
(H (k)= H (k=)
2 (k). H{k-1)=) Lt
X () ( ) Zr Hﬁ{k)+”,(}'\'*”‘

where f(k) and F(k-1) are current and previous polar
histograms, respectively.

(6)

The polar histogram of current place is convolved with
a histogram from previous place, but all hypothetic
orientation &, with equal minimum matching score
from polar histogram (orientation hypotheses) are used
to determine the best orientation. The comparison of
orientation @, which satisfies above criterion, with
heading orientation gives the matching orientation
value®,, . : ;
Mobile robot orientation is predicted using updated
value of orientation from previous step and orientation
changes due to gradient navigation method:

A (k)=8(k-1)+A0, 7
Updates of the & coordinate are as follows: Ly
B(k) =0, (k) + K (8 () -0 K)) ®)

where 0 < K < 1 is a coefficient.
4. Localization procedure

Due to highly uncertain nature of real-world sensors
and signal processing, a probabilistic framework for
mobile robot localization is used. The validation region
or gate is. by definition, the region in which the true
measurement will appear with a high probability.
Measurements outside the validation region are too far
from the expected location and thus are very unlikely
to have originated from the target of interest [6].

The probability distribution over nodes in the map is
updated whenever a new moaving, in fact a new
perception is made. Probability state is drawn from a
mixture of the temporal prior and the initialization
prior. The temporal prior combines information from
the posterior probability distribution at the previous
time instant with the temporal dynamics of the motion
models. In this way. the posterior distribution is
predicted and updated over time, integrating new
information within the Bayesian framework. [n order to




keep the number of hypotheses low, the hypotheses for
which P(h;) <y can be eliminated. Threshold y can’be

determined on basis average values of probabilities for
each possible current model.

Whenever the global position of the robot is uniquely
determined, the huge state space of the estimation
problem can be reduced to a small cube P cantered
around the robot's estimated position. The hypotheses
containing the maximum probability within P is
regarded as referring to the current position of the
robot. Fig. 5. shows the mobile robot pose probability
distribution change in the simulation environment.

Figure 5. Change of mobile robot position probability
distribution during navigation.

A multi-modal distribution with several small local
maxima is obtained after the first set of readings. The
probabilities become more concentrated after a few set
of readings, where the significant peak presents the real
position of the robot and smaller peak indication for
next possible hypothesis during moving.

5. Test results

Described global localization algorithm is tested using
a Pioneer 2DX mobile robot simulator. The size of the
environment is an 18x55m’. The simulation scenario
included several orientation changes due to used
gradient navigation method. Fig. 6. presents obtained
results regarding orientation tracking with calibrated
odometry and with proposed localization algorithm.
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Figure 6. Global localization using the IMM + SG
approach.

6. Conclusion
Mobile robot orientation correction technique using

histograms has been implemented and compared to
calibrated odometry using a mobile robot simulator. It

is shown that OVT in combination with polar
histograms, which were used for orientation correction,
gives better results then orientation tracking based on
calibrated odometry. The proposed method for mobile
robol orientation correction is a worth alternative to the
use of magnetic compass, particularly in environments
with magnetic noise.
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