59th International Symposium ELMAR-2017 is organised by:

Croatian Society Electronics in Marine - ELMAR, Zadar
University of Zagreb Faculty of Electrical Engineering and Computing,
Department of Wireless Communications

ELMAR-2017 symposium General Sponsor

Ministry of Maritime Affairs, Transport and Infrastructure of the Republic of Croatia

ELMAR-2017 symposium Sponsors

Ministry of Science and Education of the Republic of Croatia

Tankerska plovidba d.d.

Town of Zadar

OiV - Transmitters and Communications Ltd.

HRT - Croatian Radiotelevision
ELMAR-2017 symposium takes place under the co-sponsorship of:

IEEE Region 8
IEEE Croatia Section
IEEE Croatia Section Chapter of the Signal Processing Society
IEEE Croatia Section Chapter of the Antennas and Propagation Society
IEEE Croatia Section Chapter of the Microwave Theory and Techniques Society
Croatian Academy of Sciences and Arts
Croatian Academy of Engineering - HATZ
University of Zagreb
University of Zagreb Faculty of Electrical Engineering and Computing
University of Zadar

ELMAR-2017 symposium is supported by:

ZADAR TOURIST BOARD
COUNTY OF ZADAR
FALKENSTEINER BORIK ZADAR CROATIA
ELMAR-2017 SYMPOSIUM COMMITTEES

General Chair
Branka Zovko-Cihlar, University of Zagreb, Croatia

Program Chair
Mislav Grgić, University of Zagreb, Croatia

ELMAR-2017 SYMPOSIUM
INTERNATIONAL PROGRAM COMMITTEE

Juraj Bartolić, Croatia
Narcis Behlilović, Bosnia and Herzegovina
David Broughton, United Kingdom
Aura Conci, Brasil
Marek Domanski, Poland
Janusz Filipiak, Poland
Borko Furht, USA
Mohammed Ghanbari, United Kingdom
Mislav Grgić, Croatia
Sonja Grgić, Croatia
Ho Yo-Sung, Korea
Bernhard Hofmann-Wellenhof, Austria
Ebroulf Izquierdo, United Kingdom
Aggelos K. Katsaggelos, USA
Ana Katalinic Mucalo, Croatia
Ismail Khalil, Austria
Tomislav Kos, Croatia
Murat Kunt, Switzerland
igor Kuzle, Croatia
Panos Liatsis, United Kingdom
Rastislav Lukac, Canada
Lidija Mandic, Croatia
Branka Medved Rogina, Croatia
Borivoj Modlic, Croatia
Marta Mrak, United Kingdom

Mario Muštra, Croatia
Zdeněk Němec, Slovak Republic
Miloš Oravec, Slovak Republic
Jarmila Pavlovičova, Slovak Republic
Fernando Pereira, Portugal
Jan Pidanič, Slovak Republic
Pavol Podhradský, Slovak Republic
Kamisetty R. Rao, USA
Darko Ratkaj, Switzerland
Fabiana Rodrigues Leta, Brasil
Gregor Rozinaj, Slovak Republic
Markus Rupp, Austria
Gerald Schaefer, United Kingdom
Mubarak Shah, USA
Shiguang Shan, China
Thomas Sikora, Germany
Karolí Shkala, Croatia
Ryszard Stasinski, Poland
Luis Torres, Spain
Frantisek Vejražka, Czech Republic
Dijana Vitas, Croatia
Stamatis Voliotis, Greece
Krzysztof Wajda, Poland
Nick Ward, United Kingdom
Branka Zovko-Cihlar, Croatia
ELMAR-2017 SYMPOSIUM
INTERNATIONAL REVIEW COMMITTEE

Winton Afrić, Croatia
Codruta Ancuti, Italy
Goran Bakalar, Croatia
Sanja Bauk, Montenegro
Alen Begović, Bosnia and Herzegovina
Narčis Behlilović, Bosnia and Herzegovina
Marko Bosiljevac, Croatia
Jelena Božek, Croatia
Miloš Brajović, Montenegro
Jasmina Čaušević, Croatia
Emil Dumić, Croatia
Juraj Fosin, Croatia
Irena Galić, Croatia
Branimir Ivšić, Croatia
Juraj Kačur, Slovakia
Ana Katalinić-Mucalo, Croatia
Jan Kufa, Czech Republic
Hrvoje Leventić, Croatia
Časlav Livada, Croatia
Sadko Mandžuka, Croatia
Marta Mrak, United Kingdom

Mario Muštra, Croatia
Zdeněk Němec, Slovakia
Miloš Oravec, Slovakia
Jarmila Pavlovičová, Slovakia
Juraj Petrović, Croatia
Jan Pidanič, Slovakia
Pavol Podhradský, Slovakia
Michal Rezníček, Czech Republic
Renata Rybárová, Slovakia
Gregor Rozinaj, Slovakia
Markus Rupp, Austria
Tomáš Shejbal, Czech Republic
Mladen Sokele, Croatia
Isidora Stanković, Montenegro
Zvonimir Šipuš, Croatia
Namir Škaljo, Bosnia and Herzegovina
Dijana Vitas, Croatia
Mario Vranješ, Croatia
Josip Vuković, Croatia
Radovan Zentner, Croatia
Branka Zovko-Cihlar, Croatia

ELMAR-2017 SYMPOSIUM
ORGANISING COMMITTEE

Mislav Grgić, Croatia
Mario Muštra, Croatia
Jelena Božek, Croatia

Dijana Vitas, Croatia
Josip Vuković, Croatia
Preemptive Traffic Light Control based on Vehicle Tracking and Queue Lengths

Borna Kapusta, Mladen Miletic, Edouard Ivanjko, Miroslav Vujic
Faculty of Transport and Traffic Sciences, University of Zagreb, Croatia
edouard.ivanjko@fpz.hr

Abstract—Today it is possible to implement adaptive traffic light control as part of intelligent transport systems with the goal to reduce the respond times of emergency services. This allows preemptive traffic light control in an effort to reduce travel times of emergency vehicles in urban areas and negative effects on the total travel times of all vehicles in the traffic network. In this paper, a new algorithm for preemptive traffic light control is proposed. It is based on emergency vehicle location and intersection queue length data. Using these data the algorithm dynamically adapts the signal program of a signalized intersection. Proposed algorithm is tested in four different scenarios using a realistically simulated isolated intersection as a use case. The analysis of the obtained results reveals that travel times of emergency vehicles can be reduced up to 13%. In the same time, the negative effects on the total travel time of all vehicles in the network can be reduced or even compensated.

Keywords—Intelligent transport systems, Preemptive traffic light control, Microscopic simulation, Urban intersections

I. INTRODUCTION

Traffic in urban areas is primarily controlled with traffic light control systems. Each signalized intersection has a signal controller with an implemented appropriate control logic, i.e. signal program. It changes the traffic lights in a cycle that repeats itself and can be fixed (sequence order of phases and the length of the signal cycle remains the same regarding the traffic situation) and adaptive (according to the current traffic situation the length of phases, their order sequence and cycle length can be modified). According to [1] and [2], 50% of overall delay in urban areas are caused by incorrect/inadequate signal programs. In order to reduce the overall delay, adaptive traffic control is used. Such adaptive traffic control can be applied for preemptive traffic light control, e.g. for assignment of priority to an emergency vehicle (EV) with the goal to reduce the respond times of emergency services.

Priority assignment strategies on signalized intersections are nowadays being implement as part of intelligent transport systems used for control of urban traffic. According to [3], priority assignment strategies are defined to be active, passive and unconditional priority strategies. Regarding the current traffic situation (queue length, vehicle speed, phase duration, etc.), optimization of signal programs can be achieved, but phase extension must fulfill the constraints of minimum green times for all approaches [4]. A similar approach in [5] was defined for public transport (PT) priority, which can be used for emergency vehicles also. The most common active priority strategy is according to [6] the green extension strategy, with the maximum extension of green time of up to 20 [s].

The reduction of travel times for EVs is essential for improving the response time and one approach is giving priority to EVs on signalized intersections. With active priority strategies, travel times on main approaches for EVs can be reduced overall up to 35% [7], but the impact on other (secondary) approaches must be considered. In [8], the impact of preemptive priority strategies was measured. It proved that travel times for EVs were significantly reduced, but an increase of delays of other vehicles in average up to 58% was detected. Therefore, it is necessary to implement rescheduled time recovery so that the traffic situation is normalized in no less than four cycles. In the case of preemptive priority strategies, safety on signalized intersections is decreased also. Therefore, the right recovery strategy must be used.

Most of the preemption systems used today are based on an intersection-to-intersection level, and future work can be focused on the upgrade of signal control through the whole network. But, there are still open problems in optimizing the traffic light control of isolated intersections [9]. In this paper, a new algorithm for preemptive traffic light control for isolated intersections is proposed. It is based on tracking of the EV location and intersection queue length data. The algorithm measures the time rescheduled between the conflicting and non-conflicting phase regarding the route of the EV during priority assignment. After the EV has passed the intersection, the rescheduled time is returned to the conflicting phase according to the ratio of the original durations of the conflicting and non-conflicting phases.

This paper is organized as follows. The second section describes the proposed preemptive control algorithm. Basic features of the implemented simulation framework are presented in the third section. The fourth section presents the simulation setup, obtained results and a short discussion. Conclusion and description of future work end the paper.

II. ALGORITHM FOR PREEMPTIVE TRAFFIC LIGHT CONTROL

The primary goal of the proposed algorithm for preemptive traffic light control is to reduce the travel time of EVs passing through an isolated signalized intersection. Because of the analogy of the methods used in PT preemption such as the one described in [10] they can be used for the purpose of EV preemption also. The proposed algorithm can be separated into two parts. In the first part, preemptive traffic light control and assignment of priority are executed. Second part reduces the
negative impacts caused by the first part by the periodic return of rescheduled time. Namely, during the first part, the time of the green phase on the route of the EV is prolonged on account of the other conflicting phase. The time associated with the respective green phase is rescheduled from the conflicting phase to the non-conflicting phase on the route of the EV. This rescheduled time is then returned in the second algorithm part to the green light phase shortened during execution of the first algorithm part.

The first part of the proposed algorithm for preemptive traffic light control operates in three distinct stages: (i) vehicle detection and tracking; (ii) reduction of congestion on the EV route based on queue lengths; and (iii) absolute priority. In the first stage, the EV is detected and tracked. The time needed that the EV reaches the controlled isolated intersection is calculated based on its current speed and location in the network similar to the approach shown in [11]. Main difference to [11] is that in this paper the EV arrival time is used to dynamically change the duration of phases instead of changing the offset. When the calculated arrival time is below a predetermined margin, stage two will start. In this paper the margin is obtained by calculating $T_{\text{Alpha}} \cdot \text{CycleLength}$, where the value of T_{Alpha} was 3 and the value of CycleLength was 90 [s]. Parameter CycleLength denotes the cycle length of the signal program and parameter T_{Alpha} the number of signal program cycles before the EV arrives at the intersection. This stage is implemented in algorithm 1 at the beginning of the while loop with the first two statements. One has to notice that the EV location and arrival time have to be computed during the whole time the preemptive algorithm is active.

When the second stage starts, all queue lengths on the intersection are obtained first. In the case of a light congestion (short queues), the algorithm will dynamically increase the duration of the non-conflicting signal phase on the EV route in order to reduce the queue lengths on the EV route. In cases of a heavier congestion, the duration of the conflicting signal phase will be reduced in addition to the increase of the duration of the non-conflicting phase. Parameters s_{Alpha} and s_{Beta} are used to determine the congestion levels. In this paper parameters s_{Alpha} was set to 10 and s_{Beta} was set to 15. EV arrival time is still being continuously calculated in this stage and when it falls below of CycleLength/2, as set by the parameter T_{Beta} (used value 0.5), stage three will start. The second stage is implemented in algorithm 1 with the first if statement group in the while loop.

As soon as stage three begins, the algorithm will adapt the signal program to assign an absolute priority green light to the non-conflicting signal phase according to the route of the approaching EV. This green light will stay active until the EV has passed the intersection. When the EV passes the controlled intersection, the second part of the algorithm for preemptive traffic light starts. This third stage is implemented in algorithm 1 with the second if statement group in the while loop.

When the EV passes through the controlled intersection, it is also necessary to return the traffic to the original state in which it was before the occurrence of the EV. Due to the extension of the non-conflicting phase when the preemptive algorithm was active, the traffic related to the conflicting phase can be congested and its queue longer. For this reason, the time rescheduled when the preemptive algorithm was active, has to be returned back to the conflicting phase in order to reduce this congestion. This time rescheduling is done in small amounts in more consecutive signal cycles in order to keep the traffic flow stable, similar to the algorithm presented in [12]. The key difference to [12] is in the approach of calculation of rescheduled time that has to be returned. In this paper, the rescheduled time is calculated taking into account the ratio of the durations of the conflicting and non-conflicting phase. The following equation is used to compute the rescheduled time that has to be returned:

$$T_{\text{resc}} = T_{\text{taken}} \cdot \frac{t_1}{t_2},$$

where T_{resc} presents the total rescheduled time that has to be returned, [s]; T_{taken} is the total time taken from the conflicting phase, [s]; t_1 is the original duration the conflicting phase, [s]; and t_2 is the original duration of the non-conflicting phase, [s].

In the approach proposed in this paper the rescheduled time is always returned according to the ratio of the original green phases durations. That means that the longer lasting green phase will receive more returned rescheduled time to alleviate larger increase of congestion and vice versa.

Algorithm 1: Preemptive traffic light control

```plaintext
Algorithm 1: Preemptive traffic light control

while EV in Network do

Get: EV Speed, EV Position

Calculate: Intersection Distance, Arrival Time

if $T_{\text{Alpha}} \cdot \text{CycleLength} > \text{Arrival Time}$ && \text{Arrival Time} > $T_{\text{Beta}} \cdot \text{CycleLength}$ then

Get: Queue Length

if Queue Length > $s_{\text{Alpha}}$ then

Increase duration of non-conflicting phase
end if

if Queue Length > $s_{\text{Beta}}$ then

Reduce duration of conflicting phase
end if

end if

if $\text{Arrival Time} < T_{\text{Beta}} \cdot \text{CycleLength}$ then

if Current Phase $==$ Non Conflicting then

Hold green on non-conflicting phase
end if

if Current Phase $==$ Conflicting then

End phase as soon as possible
end if

end if

if $\text{EV Position} == \text{After Intersection}$ then

End of algorithm
end if

end while
```

59th International Symposium ELMAR-2017, 18-20 September 2017, Zadar, Croatia
Algorithm 2: Return of rescheduled time

Calculate: RescheduledTime
while RescheduledTime ! = 0 do
Get: CurrentPhase
if CurrentPhaseRescheduled > 0 then
CurrentPhaseDuration = CurrentPhaseDuration + TReturn
RescheduledTime = RescheduledTime − TReturn
end if
end while
Return to original signal program

Algorithm 2 presents the logic of how the rescheduled time is returned to the conflicting phase. It consists of a while loop in which the duration of the conflicting phase is increased until all rescheduled time is returned. One has to notice here that the computation of rescheduled time in algorithm 2 is executed only once at the beginning of each process to return the rescheduled time and it uses the default phase durations to compute the adapted durations.

III. VISSIM-MATLAB SIMULATION FRAMEWORK

The microscopic simulator VISSIM [13] was used to simulate the isolated intersection. A microscopic simulation allows the simulation of each traffic entity (vehicle, pedestrian, tramway) individually producing realistic traffic scenarios. VISSIM contains all modes of transport (including pedestrians) and their characteristics in one model. Characteristics of vehicles and vehicle drivers allow individual parameterization. VISSIM can be connected using a COM interface with other software tools. These tools can be used for implementation and execution of different traffic control algorithms. In this paper MATLAB [14] is used for this, i.e. to implement and execute the proposed preemptive traffic light control algorithm.

A. Generating and tracking vehicles in VISSIM

At the beginning of each link on the edges of the modeled traffic network in VISSIM, a traffic source object is located. It generates the traffic using a configuration defined by the user. This configuration includes traffic flow, distribution of vehicle types, driver behavior and distribution of vehicle speeds. To ensure randomness between different simulations, the user can define a different random seed to ensure that the defined amount of vehicles is not always created at the same time.

In order to get the location of the EV during simulation, EV position data were simulated in VISSIM by calculation of the EV position on the respective road link. These position data simulate the GPS data which can be used in a real-world implementation as proposed in [15] and [16]. The EV position was calculated as the distance of the EV from the intersection using the lengths of the road links. In order to implement this method of calculating the EV position, it is necessary to customize the start and end of each road link while designing the intersection and the adjacent road network in VISSIM. Each link must start and finish before the intersection. Connection elements are used to tie up these links. The concept of the method for calculating the EV position is shown in Fig. 2. Equation 2 is used to compute the needed distance:

\[L_R = \sum_{i=1}^{k} L_{Li} + L_{LT} - L_V, \]

where \(L_R \) presents the distance of the EV to the intersection, \([\text{m}]\); \(k \) is the number of links between the EV and intersection; \(L_{Li} \) is the length of \(i \)-th link, \([\text{m}]\); \(L_{LT} \) is the length of the link in which the EV is currently located, \([\text{m}]\); and \(L_V \) is the distance of the EV to the beginning of the link in which the EV is currently located, \([\text{m}]\).

B. Changing signal plans from MATLAB

The input parameters for simulation of the proposed algorithm in MATLAB are the original signal program, queue lengths and EV position data. By using these data, the preemptive algorithm can change the original signal program as needed depending on the position of the EV and the current traffic situation (measured queue lengths). After the signal program is changed, MATLAB sends the parameters of the adapted signal program to VISSIM in order to continue the
simulation with new simulation parameters or a new signal program. At the end of the simulation, data from VISSIM are used for further in-depth analysis and processing.

The National Electrical Manufacturers Association’s (NEMA) standard ring structure was used as a basis for changing the signal program for preemptive control [9]. By using NEMA based traffic controllers and standards it is possible to execute signal programs according to a ring structure with consecutive easy to adapt phase changes. Rings can be defined as a sequence of signal phases that are performed consecutively. The ring structure is expanded in this paper to include data about the protective time interval between phases and the maximally allowed change of the phase durations.

IV. SIMULATION RESULTS AND EVALUATION

In this section, the proposed algorithm will be evaluated using four different scenarios and the simulation framework described above. The influence of the preemptive algorithm was analyzed in different scenarios with respect to evaluation parameters related to EVs, PT and all other vehicles.

A. Simulation model

In order to evaluate the proposed algorithm, a simulation model was created in VISSIM using the data from [17]. The intersection presented in Fig. 3 was chosen because it has: (i) significant difference in traffic demand of primary and secondary traffic flow; (ii) PT (tramways); and (iii) simple fixed time signal program operating in two phases.

The chosen intersection is part of a green wave corridor in the city of Zagreb, Croatia. This corridor is an important horizontal (East-West and vice versa) connection of the City of Zagreb and used by EVs from a nearby hospital. It is also prone to daily reoccurring congestions and therefore important as a use case to test preemptive control on this intersection.

B. Traffic scenarios and traffic data

Algorithm evaluation was done using four different scenarios. In the first and second scenario, the EV travels along the main traffic direction and returns the same way. The EV routes for the described scenarios are presented in Fig. 4. Traffic demand for each scenario is shown in Table I. It can be noticed that scenarios one and three have lower, and scenarios two and four have higher traffic demand.

The simulation of each scenario lasted 1 h with a 15 min warm-up period. The 15 min warm-up period was used to fill the simulated traffic network with vehicles. This warm-up period is excluded from the evaluation of the proposed algorithm. One EV was generated around the 20th simulation minute to perform the entry route and another around the 40th simulation minute to perform the return route. These time points for EV generation were defined to alleviate the detection and tracking of the generated EV.

C. Obtained traffic parameters

Each traffic scenario was simulated 10 times without the use of the preemptive algorithm, with the preemptive algorithm without the return of rescheduled time, and with the preemptive algorithm including the return of rescheduled time. Obtained averaged simulation results are presented in detail in Tables II and III. The following measure of effectiveness (MoE) or traffic parameters that describe the level of service related to EVs, PT (tramways) and all other vehicles were obtained for each scenario: T_{TEV} as the travel time of EVs; NS_{EV} as the number of stops of the EV; LT_{EV} as the lost time of the EV; ST_{EV} as the stop time of the EV; T_{TTPT} as the total travel time of all vehicles; and TT_{PT} as the total travel time of PT vehicles.
D. Discussion

Reduction of the travel time of the EV (TT_{EV}) has been obtained in each scenario with the implementation of the proposed preemptive algorithm. Additionally, small improvements can be seen in all scenarios except scenario one where the algorithm for the return of rescheduled time is used also. Best result has been obtained in scenario two where the EV travel time was reduced by 10.83 % with the preemption algorithm, and 13.83 % with preemption and return of rescheduled time. This can be explained by the fact that the EV travels only on the primary traffic flow and the prolonged green phase for the non-conflicting phase clears the route of the EV for its return also.

The total number of stops of the EV is shown in Tables II and III as NS_{EV}. From Tables II and III it is apparent that using both preemptive algorithms completely eliminates the number of stops in some scenarios. Without the preemptive algorithm, the EV stops in average two times during the simulation. By using the preemptive algorithm and algorithm for returning of rescheduled time, the EV passes on average through the simulated transport network without stopping.

In the case of the lost time of EV (LT_{EV}), an analogy with the travel time of EV (TT_{EV}) is observed. This confirms that the reduction of the travel time of the EV is caused by the reduction of the lost time of the EV. Without the preemptive algorithm, the EV was stopped on average for 32 s. By implementing the algorithm for preemptive control and the algorithm for returning of rescheduled time, EV was on average stopped for 0 s because the EV did not stop in any simulated scenario.

Total travel time of all vehicles (TTT) is slightly reduced with the use of the preemptive algorithm in all scenarios except scenario four. This result is credited to the large difference of traffic demand of the primary and secondary traffic flow. The EV spends most of its travel time on the primary traffic flow and with the use of preemptive algorithm TTT is reduced because the prolonged green phase is assigned to a larger number of vehicles. With the use of the algorithm for the return of the rescheduled time, there are no significant changes in TTT except in scenario four where an improvement of 0.28 % was observed.

The PT total travel time (given in Tables II and III with TT_{PT}) shows a similar result as the total travel time of all vehicles. It was reduced in all scenarios except in scenario three in which the algorithm for the return of rescheduled time was used.

V. Conclusion and Future Work

In this paper, an algorithm for preemptive traffic light control of an isolated intersection based on vehicle tracking and queue lengths is proposed. The algorithm assigns the priority to EVs in order to reduce the travel time of such vehicles. This is done by rescheduling of the green phase time from the conflicting to the non-conflicting phase. After the EV passes the intersection, the rescheduled time is returned...
to the conflicting phase in order to minimize the influence of preemptive traffic light control on the surrounding urban traffic network. For the return of rescheduled time, the algorithm takes into account the ratio of the original conflicting and non-conflicting green phase durations.

To analyze the impact of preemptive traffic light control, an isolated intersection on one of the green wave corridors of city of Zagreb, Croatia was simulated using a VISSIM-MATLAB framework and realistic traffic data. Obtained MoEs reveal that conflicting green phase durations.

Future work on this topic will include augmentation of the proposed algorithm to enable preemptive traffic light control on the whole route of the EV. Ability to cope with more complex intersections containing signal programs with more phases and PT interfering from both horizontal and vertical traffic directions will be added and evaluated also. That means preemptive traffic light control on several consecutive intersections placed close to each other in a realistic urban traffic network.

ACKNOWLEDGMENT

The authors would like to thank the company PTV Group and the University of Zagreb Faculty of Transport and Traffic Sciences for supporting the work published in this paper.

REFERENCES